Abstract
本篇文章就是研究在一个新场景下的人工噪声防干扰的问题,(主要方法还是交替迭代)
加入人工噪声之后,joint beamforming的问题
(我觉得这种本质方法都是一样的,我可以兼顾一些不同方法的文章)(之前有一篇解释形成机制的在哪来着
System Model
这个之前看的文章不一样的地方在于,在发送方引入一个人工噪声
f
2
a
\boldsymbol f_2 a
f2a, 其中
f
2
\boldsymbol f_2
f2是关于信息
a
a
a的beamforming vector,
所以这个联合优化问题,优化的是
f
1
,
f
2
,
Θ
\boldsymbol f_1, \boldsymbol f_2, \Theta
f1,f2,Θ
问题转化为:
算法思路 固定一个,优化另一个,AO交替迭代
对于给定的
v
\boldsymbol v
v,优化
f
1
\boldsymbol f_1
f1,
f
2
\boldsymbol f_2
f2,
作者把问题转化为:
通过引入lemma1, 将 原式 简化成
−
ln
x
≥
max
t
>
0
−
t
x
+
ln
t
+
1
-\ln x \geq \max_{t>0} -tx+\ln t+1
−lnx≥maxt>0−tx+lnt+1 当且仅当
x
=
1
/
t
x = 1/t
x=1/t时取最优值
这个定理比较好证,见 (等会单独写tricks)
另外就是 一般的推导, 得到
(注,Simon minimax thereom, 简单理解就是 当目标函数 对于各随机变量 是紧的 (对于min 是concave, 对于 max 是 convex) ,则 min 和max可交换顺序,见tricks
(后面这个我傻掉了推了好久,之前老师说每周略读3篇,精读3篇 (精读就是包括 推公式和仿真,我每天还是太闲了,但是我看论文都没有仿真过,以后可以只仿主要部分的代码)
这个推完之后,就是一般的优化操作了
然后就是固定
f
1
\boldsymbol f_1
f1,
f
2
\boldsymbol f_2
f2, 优化
v
\boldsymbol v
v了
具体步骤是类似的,也是运用lemma1
然后就是交替迭代
(这种迭代的算法复杂度一般都很高)
还是先看YC-L那篇文章
Simulation
setup
作者设置了两种scenarioes, 一个近,一个远, 信道模型采用的是莱斯信道,
还有原来大尺度和小尺度是这么算的
关于图的metric的设置:
Achievable secrecy Rate
横坐标有:
maximum transmit power
number of Eves (窃听者数量)
number of reflecting elements
benchamark 有:
noIRS
noAN 的组合
我觉得他最后一个解释的不太好,setup(b)好的原因 应该去探究 direct link 和 indirect link 对 Bob /Eve 所占的比例贡献
按常理来说,Eve 跟 Bob近,窃听效果越好,但是IRS主打的 就是 降低SINR,(有可能不是mmWave,所以方向性不好?)
好吧,解释也能接受
Conclusion
作者说他们是第一个将IRS引入AN的场景中,并且进行joint beamforming的设计的,所以没有其他的benchmark,只有跟no AN或者no-IRS的比较,结论还是 IRS可以增大 achievable secrecy rate