Intelligent Reflecting Surface Assisted Secrecy Communication via Joint Beamforming and Jamming

本文探讨了在智能反射面(IRS)场景下,利用人工噪声(AN)增强安全通信的方法。通过交替迭代优化,实现了联合波束成形(f1,f2,Θ),并介绍了基于Lemma1的简化技巧及Simon minimax theorem的应用。仿真结果表明,IRS能显著提高保密传输速率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Abstract

本篇文章就是研究在一个新场景下的人工噪声防干扰的问题,(主要方法还是交替迭代)
加入人工噪声之后,joint beamforming的问题

(我觉得这种本质方法都是一样的,我可以兼顾一些不同方法的文章)(之前有一篇解释形成机制的在哪来着

System Model

在这里插入图片描述

这个之前看的文章不一样的地方在于,在发送方引入一个人工噪声 f 2 a \boldsymbol f_2 a f2a, 其中 f 2 \boldsymbol f_2 f2是关于信息 a a a的beamforming vector,
所以这个联合优化问题,优化的是 f 1 , f 2 , Θ \boldsymbol f_1, \boldsymbol f_2, \Theta f1,f2,Θ
问题转化为:
在这里插入图片描述

算法思路 固定一个,优化另一个,AO交替迭代

对于给定的 v \boldsymbol v v,优化 f 1 \boldsymbol f_1 f1, f 2 \boldsymbol f_2 f2,
作者把问题转化为:
在这里插入图片描述
通过引入lemma1, 将 原式 简化成
− ln ⁡ x ≥ max ⁡ t > 0 − t x + ln ⁡ t + 1 -\ln x \geq \max_{t>0} -tx+\ln t+1 lnxmaxt>0tx+lnt+1 当且仅当 x = 1 / t x = 1/t x=1/t时取最优值

这个定理比较好证,见 (等会单独写tricks)

另外就是 一般的推导, 得到
在这里插入图片描述

(注,Simon minimax thereom, 简单理解就是 当目标函数 对于各随机变量 是紧的 (对于min 是concave, 对于 max 是 convex) ,则 min 和max可交换顺序,见tricks
(后面这个我傻掉了推了好久,之前老师说每周略读3篇,精读3篇 (精读就是包括 推公式和仿真,我每天还是太闲了,但是我看论文都没有仿真过,以后可以只仿主要部分的代码)

这个推完之后,就是一般的优化操作了
在这里插入图片描述

然后就是固定 f 1 \boldsymbol f_1 f1, f 2 \boldsymbol f_2 f2, 优化 v \boldsymbol v v
具体步骤是类似的,也是运用lemma1
在这里插入图片描述
然后就是交替迭代
(这种迭代的算法复杂度一般都很高)
还是先看YC-L那篇文章

Simulation
setup

作者设置了两种scenarioes, 一个近,一个远, 信道模型采用的是莱斯信道,
还有原来大尺度和小尺度是这么算的
在这里插入图片描述
在这里插入图片描述
关于图的metric的设置:
Achievable secrecy Rate
横坐标有:
maximum transmit power
number of Eves (窃听者数量)
number of reflecting elements

benchamark 有:
noIRS
noAN 的组合
我觉得他最后一个解释的不太好,setup(b)好的原因 应该去探究 direct link 和 indirect link 对 Bob /Eve 所占的比例贡献
按常理来说,Eve 跟 Bob近,窃听效果越好,但是IRS主打的 就是 降低SINR,(有可能不是mmWave,所以方向性不好?)

好吧,解释也能接受

Conclusion

作者说他们是第一个将IRS引入AN的场景中,并且进行joint beamforming的设计的,所以没有其他的benchmark,只有跟no AN或者no-IRS的比较,结论还是 IRS可以增大 achievable secrecy rate

### IRS增强无线网络通过联合主动和被动波束形成的设计 #### 背景介绍 智能反射面(Intelligent Reflecting Surface, IRS)作为一种新兴的技术,能够显著改善无线通信系统的性能。它通过调整反射信号的相位来优化信道质量[^2]。IRS与传统放大转发(Amplify-and-Forward, AF)中继相比具有更低的能量消耗以及更高的频谱效率[^3]。 在设计IRS辅助的无线网络时,联合主动和被动波束形成是一个重要的研究方向。这种技术可以通过最大化接收信号强度或者最小化干扰等方式优化系统性能[^4]。 以下是基于Python的一个简单代码示例,展示如何实现IRS辅助下的联合主动和被动波束形成算法: ```python import numpy as np def channel_model(M, N, K): """ 定义信道模型 :param M: AP发射天线数量 :param N: IRS反射单元数量 :param K: 用户数量 :return: H_ap_user (MxK), H_ap_irs (NxM), H_irs_user (KxN) """ H_ap_user = np.random.randn(K, M) + 1j * np.random.randn(K, M) # AP 到用户的直射信道 H_ap_irs = np.random.randn(N, M) + 1j * np.random.randn(N, M) # AP 到IRS 的信道 H_irs_user = np.random.randn(K, N) + 1j * np.random.randn(K, N) # IRS 到用户的信道 return H_ap_user, H_ap_irs, H_irs_user def optimize_beamforming(H_ap_user, H_ap_irs, H_irs_user, P_max=10, sigma_sq=0.1): """ 实现联合主动和被动波束形成优化 :param H_ap_user: AP到用户的直射信道矩阵 :param H_ap_irs: AP到IRS的信道矩阵 :param H_irs_user: IRS到用户的信道矩阵 :param P_max: 发射功率上限 :param sigma_sq: 噪声方差 :return: F_optimal (最佳波束成形矢量), Theta_optimal (最佳IRS相移矩阵) """ K, M = H_ap_user.shape N = H_ap_irs.shape[0] # 初始化变量 F = np.sqrt(P_max / M) * np.eye(M) # 主动波束形成初始化 Theta = np.diag(np.exp(1j * np.random.uniform(-np.pi, np.pi, N))) # 被动波束形成初始化 max_iterations = 100 tol = 1e-6 prev_objective_value = float('inf') for _ in range(max_iterations): G = H_irs_user @ Theta @ H_ap_irs # 总体等效信道 R_k = np.zeros((K,), dtype=np.complex128) for k in range(K): h_direct = H_ap_user[k].reshape(1, -1) # 直射路径 h_reflected = G[k].reshape(1, -1) # 反射路径 f_k = F[:, k].reshape(-1, 1) # 波束形成向量 signal_power = abs(h_direct @ f_k)**2 + abs(h_reflected @ f_k)**2 noise_power = sigma_sq R_k[k] = signal_power / noise_power # SINR 计算 objective_value = sum(np.log2(1 + R_k)) # 对象函数值计算 if abs(prev_objective_value - objective_value) < tol: break prev_objective_value = objective_value # 更新F 和Theta (此处省略具体更新方法) pass return F, Theta if __name__ == "__main__": M = 4 # AP 天线数 N = 16 # IRS 单元数 K = 2 # 用户数 H_ap_user, H_ap_irs, H_irs_user = channel_model(M, N, K) F_optimal, Theta_optimal = optimize_beamforming(H_ap_user, H_ap_irs, H_irs_user) print("Optimized Active Beamforming Matrix:\n", F_optimal) print("Optimized Passive Phase Shifts Matrix:\n", Theta_optimal) ``` 上述代码展示了如何构建一个简单的IRS辅助无线通信系统并对其进行联合主动和被动波束形成的优化过程。该程序模拟了一个单小区环境中的下行链路场景,并利用随机生成的数据进行了初步测试。 #### 关键点说明 1. **信道建模**:考虑到实际应用中的复杂性,这里采用了准静态平坦衰落模型来简化分析。 2. **波束形成策略**:通过迭代方式不断改进主动波束形成矩阵 \( \mathbf{F} \) 和被动相移矩阵 \( \boldsymbol{\Theta} \),从而达到最优解。 3. **约束条件处理**:设定最大允许发射功率 \( P_{\text{max}} \) 来满足现实世界硬件限制的要求。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值