pytorch 交叉熵损失 出现nan

在深度学习中,由于.sqrt()操作可能导致梯度消失或爆炸,从而在训练过程中出现nan损失。问题在于开方运算在反向传播时会使分母可能接近0。解决方法包括避免使用开方或在开方项添加小的正数以防止除以零。例如,通过添加1e-8防止分母为零,或者完全避免开方操作以消除潜在的梯度稳定性问题。

1. 问题描述

代码如下:

norm_ff = ff / (ff**2).sum(0, keepdim=True).sqrt()
coef_mat = torch.mm(norm_ff.t(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值