Python
junjian Li
如若前路不明,请俯首看脚下.
展开
-
python -m中m参数的解释
python -m是将库中的python模块用作脚本去运行。原创 2023-04-13 15:33:55 · 526 阅读 · 0 评论 -
Linux中使用setproctitle修改进程的名称
setprotitle来修改进程的名字原创 2023-03-02 19:16:28 · 717 阅读 · 2 评论 -
tmux 学习与常用命令
tmux原创 2023-02-24 16:56:18 · 223 阅读 · 0 评论 -
Linux wget爬虫命令
查看网站URL是否正常最常见的方式莫过于使用wget和curl工具来活动网站的URL信息;–q, --quit 安静的访问,禁止输出,类似于 -o 、dev/null。–o, --output-file=FILE,记录输出到文件中。–spider 模拟爬虫的行为去访问网站,但是不会下载网站。实时监控的方式:(利用放回值确定网站是否正常)=> 输出 0 表示上个命令执行正常。–T, 网站访问超时的时间。–t,网站异常时重试的次数。原创 2023-02-21 14:59:01 · 749 阅读 · 0 评论 -
Flask中第一个参数__name__的含义
如果 test.py 模块位于一个名为 my_package 的 Python 包中,那么 __name__的值就是 my_package.test。我们在使用Flask框架时,创建一个app,需要用到Flask(__name__)的语句;中名为 test.py 的模块中,__name__的值为 test。原创 2023-02-20 13:49:17 · 331 阅读 · 0 评论 -
python日志logger
【代码】python日志logger。原创 2023-02-20 10:24:19 · 251 阅读 · 0 评论 -
shell中的#!/bin/bash
是一个特殊的表示符,其后,跟着解释此脚本的shell路径。是指此脚本使用/bin/bash来解释执行。原创 2023-02-19 21:32:34 · 888 阅读 · 0 评论 -
python定义类的时候继承object类
区别在于python2和python3,python3继承不继承object类都没有区别,但是python2继承object类的话,可以获得更多的魔术方法(静态方法,类方法的构造,类属性的快速访问,定制类实例的实现方法)。原创 2023-02-17 09:15:35 · 322 阅读 · 0 评论 -
Python中类对象自带的__str__函数
_str__是Python中类对象自带的一个函数,正常情况下,我们实例化对象后,print对象,输出的是这个对象的地址.而通过自定义__str__()函数,可以帮我们打印对象中的内容。原创 2023-02-16 15:42:26 · 479 阅读 · 0 评论 -
@classmethod
@classmethod原创 2022-12-07 17:30:46 · 902 阅读 · 0 评论 -
python格式化日期时间自动补0
python格式化日期时间自动补0原创 2022-08-30 16:34:07 · 1463 阅读 · 0 评论 -
linux 后台运行并输出log到指定文件
linux 后台运行并输出log到指定文件nohup python -u run_pretrain_nezha.py >run_pretrain_nezha.txt 2>&1 &原创 2022-05-10 11:11:18 · 1693 阅读 · 0 评论 -
将Jupyter Notebook代码转换为Python脚本
jupyter nbconvert --to script my_notebook.ipynb原创 2022-01-29 19:16:22 · 1856 阅读 · 0 评论 -
Pytorch里面的DataLoader的collate_fn参数
DataLoader的collate_fn参数,实现自定义的batch输出。DataLoader完整的参数表如下:class torch.utils.data.DataLoader( dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None, num_workers=0, collate_fn=<function default_collate>,原创 2022-01-13 19:09:23 · 1400 阅读 · 0 评论 -
TFIDF代码
Dim_tfidf = 32X = df['post_detail'].valuestfv = TfidfVectorizer(max_df=0.6, min_df=6, sublinear_tf=False)tfv.fit(X)X_tfidf = tfv.transform(X)svd = TruncatedSVD(n_components=Dim_tfidf)svd.fit(X_tfidf)X_svd = svd.transform(X_tfidf)for i in range(原创 2021-09-29 13:38:03 · 107 阅读 · 0 评论 -
F-beta代码实现
F_beta的公式如下Fbeta=(1+β2)∗p∗rβ2∗p+rF_{beta} = \frac{(1 + \beta^2)*p*r}{\beta^2*p + r} Fbeta=β2∗p+r(1+β2)∗p∗rdef f_beta(y_hat, y_true, beta=0.3, threshold=0.5): ''' y_hat是sigmoid输出的概率值 ''' epsilon = 1e-7 y_hat = y_hat > threshold原创 2021-09-22 11:08:13 · 311 阅读 · 0 评论 -
Python中str/bytes/list/tuple的长度的时间复杂度
Python中str/bytes/list/tuple的长度的时间复杂度为o(1),这是因为str/bytes/list/tuple 的长度由解释器在内部记录并维护,c实现的python字符串结构体里有个变量专门记录字符串长度,不用遍历字符串原创 2021-09-21 10:06:17 · 346 阅读 · 0 评论 -
collections的Counter
对字符串,列表,元组,字典进行计数,返回一个字典类型的数据,key是元素,values是元素出现的次数from collections import Countera = [1, 2, 3, 4, 1, 2, 3, 4]c = Counter(a)print(c)输出:Counter({1: 2, 2: 2, 3: 2, 4: 2})most_common(n)(统计出现次数最多的n个元素)most_common = c.most_common(2)most_common[原创 2021-07-08 10:46:20 · 101 阅读 · 0 评论 -
使用sorted 对字典(哈希表)进行排序
对一个字典的value值进行排序可以使用lambda和sorted()来实现:results = sorted(hashtable.items(), key=lambda x:x[1], reverse=True原创 2021-07-08 10:13:54 · 410 阅读 · 0 评论 -
list和tuple的底层实现
在使用list的过程中,list给我们呈现的是一个长度可变的数组,但是list底层的数据结构是什么样子的?list是一个长度可以变的连续数组,其中有一个ob_item指针列表,里面每一个指针都指向列表中的元素,而allocated则用于存储该列表分配的空间大小。allocated和列表的实际空间大小不一样,列表的实际空间大小,指的是len(list)返回的结果,也就是ob_item的大小。表示该列表总共存储了多少个元素,而在实际情况中,为了优化存储结构,避免每次增加元素都要重新分配内存,列表预分配的空间原创 2021-05-25 19:21:27 · 315 阅读 · 0 评论 -
Python: self的含义
python中self是什么:指向该实例本身的引用python中的self在定义类的时候需要去定义,在创建实例的时候或者在调用的时候会自动传入。class Dog: def __init__(self): print("正在执行构造方法") # 定义一个jump()实例方法 def jump(self): print("正在执行jump方法")python要求,类方法(构造方法和实例方法)中至少要包含一个参数,但并没有规定此参数的名称(完全可以原创 2021-05-25 12:24:42 · 3074 阅读 · 0 评论 -
Python对Dict排序
python对dict进行排序:result = sorted(my_dict.items(), key = lambda x:x[1], reverse=True)如果对key排序,用x[0];默认的是从小到大排序,如果是从大到小,需要用reverse = True.返回的result是一个list,不再是一个dictwords = ["i", "love", "leetcode", "i", "love", "coding"]result = sorted(words.items(), k原创 2021-05-23 10:57:18 · 2317 阅读 · 0 评论 -
可变对象和不可变对象 & 深拷贝和浅拷贝
1. 什么是可变对象,什么是不可变对象可变对象是指,一个对象在不改变其所指向的地址的前提下,可以修改其所指向的地址中的值;简而言之是对象存放在地址中的值会原地改变。dict, list和set都是可变对象。不可变对象是指,一个对象所指向的地址上值是不能修改的,如果你修改了这个对象的值,那么它指向的地址就改变了,相当于你把这个对象指向的值复制出来一份,然后做了修改后存到另一个地址上了,但是可变对象就不会做这样的动作,而是直接在对象所指的地址上把值给改变了,而这个对象依然指向这个地址。int,str,f原创 2021-04-06 23:04:55 · 337 阅读 · 0 评论 -
RTX2080 实验 faiss
1.在服务器上面创建cuda10容器2.安装anaconda3.然后安装pytorch:conda install pytorch torchvision cudatoolkit=10.04.创建虚拟环境:conda create -n pytorch27 python=2.7然后进入到创建的虚拟环境:conda activate pytorch27然后在虚拟环境中安装pytorch:conda install pytorch torchvision cudatoolkit=10.1原创 2020-07-26 23:09:23 · 1558 阅读 · 0 评论 -
plt.scatter()和plt.legend()的记录
最近在画图的时候,需要在右上角把类别和颜色对应关系画出来.因为刚开始是一个点一个点scatter的,代码如下:data = []lab =[]markers = ["+", "*", "<", ".", "o", ">", ",", "p", "3"]colors = ["red", "green", "orange", "yellow"]for i in range(0,len(data)):'''遍历data中的每个点,然后将其scatter出来.data是一个[79944原创 2020-07-30 14:27:27 · 2724 阅读 · 1 评论 -
ERROR: Command errored out with exit status 1
在安装openslide的时候出现:ERROR: Command errored out with exit status 1: command: 'd:\anaconda\python.exe' -u -c 'import sys, setuptools, tokenize; sys.argv[0] = '"'"'C:\\Users\\10622\\AppData\\Local\\Temp\\pip-install-2au6lf3q\\openslide-python\\setup.py'"'原创 2020-06-28 09:25:18 · 5331 阅读 · 0 评论 -
将数据集划分为训练集验证集和测试集
将数据集划分为训练集验证集和测试集:""" 将原始数据集进行划分成训练集、验证集和测试集"""import osimport globimport randomimport shutildataset_dir = os.path.join("..", "..", "Data", "cifar-10-png", "raw_test")train_dir = os.path...原创 2020-04-18 21:04:24 · 5435 阅读 · 0 评论 -
t 分布随机邻域嵌入(t-SNE)
简介t-SNE( TSNE )将数据点的相似性转换为概率。原始空间中的相似性表示为高斯联合概率(根据数据点之间的相似性转换为概率),嵌入空间中的相似性表示为 “学生” 的 t 分布。这允许 t-SNE 对局部结构特别敏感,并且有超过现有技术的一些其它优点.t-SNE 是目前来说效果最好的数据降维与可视化方法,但是它的缺点也很明显,比如:占内存大,运行时间长。但是,当我们想要对高维数据进行分类,...原创 2020-01-14 10:31:46 · 5514 阅读 · 0 评论 -
关于H5文件读取并保存为图片.以及label的读取.
import h5pyimport numpy as npimport imageio#print的时候不会输出省略号np.set_printoptions(threshold=300000)data_path = "F:\数据集\camelyonpatch\camelyonpatch_level_2_split_train_x.h5"label_path = "F:\数据集\cam...原创 2019-11-12 15:00:03 · 1996 阅读 · 4 评论