AEDA:AnEasier Data Augmentation Technique for Text Classification
论文地址:https://arxiv.org/pdf/2108.13230.pdf
代码地址:https://github.com/akkarimi/aeda_nlp
为了让模型由更好的泛化能力,一般需要更多的更加全面的数据集,但是数据的收集和标注是很费事费力的,所以这个时候数据增强技术就很重要。
在NLP领域,EDA(Easy Data Augmentation Techniques for Boosting Performance on TextClassification Tasks,2019)提出了四种简单的数据增强操作,包括:同义词替换(通过同义词表将句子中的词语进行同义词替换)、随机交换(随机交换句子的两个词语,改变语序)、随机插入(在原始句子中随机插入,句子中某一个词的同义词)和随机删除(随机删除句子中的词语)。
目前,也有一些其他的数据增强方法,例如:同义词替换不使用词表,而是使用词向量或者预训练语言模型;通过在在文本中插入一些符合或者词语,来增加噪声;将句子通过翻译器翻译成另外一种语言再翻译回来的回译手段等。
AEDA Augmentation
该论文所提出的AEDA方法,主要是在原始文本中随机插入一些标点符号,属于增加噪声的一种,主要与EDA论文对标,突出“简单”二字。注意:该方法仅适用于文本分类任务。
Q:插入多少标点符号?
A: 从1到三分之一句子长度中,随机选择一个数,作为插入标点符号的个数。
Q: 为什么是三分之一的句子长度?
A:作者表示,即想每个句子有标点符号插入,增加句子的复杂性,又不想加入太多的标点符号,过于干扰句子的语义信息,并且太多噪声可能对模型由负面影响。
Q:句子插入标点符号的位置如何选取?
A:随机插入。
Q:标点符号共包含哪些?
A:主要有6种,“.”、“;”、“?”、“:”、“!”、“,”。
Q:AEDA比EDA效果好的理论基础是什么?
A:作者认为,EDA方法,如论是同义词替换,还是随机替换、随机插入、随机删除,都改变了原始文本的序列信息;而AEDA方法,只是插入标点符号,对于原始数据的序列信息修改不明显。个人理解,通过词语修改的方法,与原始语义改变可以更加负面;而仅插入一些标点符号,虽然增加了噪声,但是原始文本的语序并没有改变。
代码:
PUNCTUATIONS = ['.', ',', '!', '?', ';', ':']
PUNC_RATIO = 0.3
def insert_punctuation_marks(sentence, punc_ratio=PUNC_RATIO):
words = jieba.cut(sentence.strip())
words = ' '.join(words)
new_line = []
q = random.randint(1, int(punc_ratio * len(words) + 1))
if q >= len(words):
q = 0
assert q <= len(words)
qs = random.sample(range(0, len(words)), q)
for j, word in enumerate(words):
if j in qs:
new_line.append(PUNCTUATIONS[random.randint(0, len(PUNCTUATIONS) - 1)])
new_line.append(word)
new_line = ' '.join(new_line)
return new_line
train['text'] = train['text'].apply(lambda x:insert_punctuation_marks(x))