7-18 二分法求多项式单根 (20分)
二分法求函数根的原理为:如果连续函数f(x)在区间[a,b]的两个端点取值异号,即f(a)f(b)<0,则它在这个区间内至少存在1个根r,即f®=0。
二分法的步骤为:
检查区间长度,如果小于给定阈值,则停止,输出区间中点(a+b)/2;否则
如果f(a)f(b)<0,则计算中点的值f((a+b)/2);
如果f((a+b)/2)正好为0,则(a+b)/2就是要求的根;否则
如果f((a+b)/2)与f(a)同号,则说明根在区间[(a+b)/2,b],令a=(a+b)/2,重复循环;
如果f((a+b)/2)与f(b)同号,则说明根在区间[a,(a+b)/2],令b=(a+b)/2,重复循环。
本题目要求编写程序,计算给定3阶多项式f(x)=a
3
x
3
+a
2
x
2
+a
1
x+a
0
在给定区间[a,b]内的根。
输入格式:
输入在第1行中顺序给出多项式的4个系数a
3
、a
2
、a
1
、a
0
,在第2行中顺序给出区间端点a和b。题目保证多项式在给定区间内存在唯一单根。
输出格式:
在一行中输出该多项式在该区间内的根,精确到小数点后2位。
输入样例:
3 -1 -3 1
-0.5 0.5
输出样例:
0.33
import java.util.*
import kotlin.math.abs
fun main(args: Array<String>) {
val scanner = Scanner(System.`in`)
var a3 = scanner.nextDouble()
var a2 = scanner.nextDouble()
var a1 = scanner.nextDouble()
var a0 = scanner.nextDouble()
var a = scanner.nextDouble()
var b = scanner.nextDouble()
var result: Double
while((b-a)>0.01) {
var s = (a + b) / 2
var fs = a3 * s * s * s + a2 * s * s + a1 * s + a0
var fa = a3 * a * a * a + a2 * a * a + a1 * a + a0
var fb = a3 * b * b * b + a2 * b * b + a1 * b + a0 //迷惑操作
if(fa == fb) {
print("$fa")
System.exit(0) //结束程序,和C/C++里的return 0;等同
}
if(fa * fb <= 0) {
if(fs / abs(fs) == fa / abs(fa)) {
a = s
} else {
b = s
}
}
result = fs
}
var ans: String = String.format("%.2f",(a+b)/2)
print("$ans")
}