7-18 二分法求多项式单根 (20分) Kotlin

7-18 二分法求多项式单根 (20分)

二分法求函数根的原理为:如果连续函数f(x)在区间[a,b]的两个端点取值异号,即f(a)f(b)<0,则它在这个区间内至少存在1个根r,即f®=0。

二分法的步骤为:

检查区间长度,如果小于给定阈值,则停止,输出区间中点(a+b)/2;否则
如果f(a)f(b)<0,则计算中点的值f((a+b)/2);
如果f((a+b)/2)正好为0,则(a+b)/2就是要求的根;否则
如果f((a+b)/2)与f(a)同号,则说明根在区间[(a+b)/2,b],令a=(a+b)/2,重复循环;
如果f((a+b)/2)与f(b)同号,则说明根在区间[a,(a+b)/2],令b=(a+b)/2,重复循环。
本题目要求编写程序,计算给定3阶多项式f(x)=a
​3
​​ x
​3
​​ +a
​2
​​ x
​2
​​ +a
​1
​​ x+a
​0
​​ 在给定区间[a,b]内的根。

输入格式:
输入在第1行中顺序给出多项式的4个系数a
​3
​​ 、a
​2
​​ 、a
​1
​​ 、a
​0
​​ ,在第2行中顺序给出区间端点a和b。题目保证多项式在给定区间内存在唯一单根。

输出格式:
在一行中输出该多项式在该区间内的根,精确到小数点后2位。

输入样例:

3 -1 -3 1
-0.5 0.5

输出样例:

0.33


import java.util.*
import kotlin.math.abs

fun main(args: Array<String>) {
    val scanner = Scanner(System.`in`)
    var a3 = scanner.nextDouble()
    var a2 = scanner.nextDouble()
    var a1 = scanner.nextDouble()
    var a0 = scanner.nextDouble()
    var a = scanner.nextDouble()
    var b = scanner.nextDouble()
    var result: Double
    while((b-a)>0.01) {
        var s = (a + b) / 2
        var fs = a3 * s * s * s + a2 * s * s + a1 * s + a0
        var fa = a3 * a * a * a + a2 * a * a + a1 * a + a0
        var fb = a3 * b * b * b + a2 * b * b + a1 * b + a0      //迷惑操作
        if(fa == fb) {
            print("$fa")
            System.exit(0)      //结束程序,和C/C++里的return 0;等同
        }
        if(fa * fb <= 0) {
            if(fs / abs(fs) == fa / abs(fa)) {
                a = s
            } else {
                b = s
            }
        }
        result = fs
    }
    var ans: String = String.format("%.2f",(a+b)/2)
    print("$ans")
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我真的不是cjc

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值