[Python图像处理] 基于离散余弦变换的图像去噪

38 篇文章 71 订阅 ¥19.90 ¥99.00

基于离散余弦变换的图像去噪原理

在本节中,我们将学习如何使用离散余弦变换( Discrete Cosine Transform, DCT) 对带有噪声的 RGB 彩色图像执行去噪操作,得到纯净的原始图像。为了实现此操作,我们使用 OpenCV 库中的一个简单有效的去噪函数 dctDenoising(),该函数为了达到去噪的目的在内部使用了局部 DCT 阈值。算法在去相关之后,将阈值分别应用于每个颜色通道。由于该算法的简单性和高性能,通常被视为开发新算法时的比较基准和性能下限。函数 dctDenoising() 的调用方式如下所示:

cv2.xphoto.dctDenoising(src, sigma, psize)

该函

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI technophile

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值