【数学分析笔记】第1章第2节:映射与函数(1)

1. 集合与映射

1.9 映射

  • 映射指的是集合之间的一种对应关系。
  • 【定义1.2.1】 X \textbf{X} X Y \textbf{Y} Y是两个集合,按照规则 f f f对任意 x ∈ X x\in\textbf{X} xX,有唯一的 y ∈ Y y\in\textbf{Y} yY与之对应,则称规则 f f f是集合 X \textbf{X} X到集合 Y \textbf{Y} Y的一个映射,写作:

f : X ⟶ Y f:\textbf{X}\longrightarrow \textbf{Y} f:XY

x ⟼ y = f ( x ) x\longmapsto y=f(x) xy=f(x)

  • y y y是在映射 f f f下面 x x x
  • x x x是在映射 f f f y y y一个逆像。( x x x的像是唯一的,而 y y y的逆像可以不唯一)
  • X : f \textbf{X}:f X:f的定义域,记作 X = D f \textbf{X}=\textbf{D}_{f} X=Df
  • Y : Y: Y:值域 R f ⊂ Y \textbf{R}_{f}\subset\textbf{Y} RfY R f = { y ∣ y ∈ Y 且 y = f ( x ) , x ∈ X } \textbf{R}_{f}=\{y|y\in\textbf{Y}且y=f(x),x\in\textbf{X}\} Rf={yyYy=f(x),xX}

【例1.2.1】 X : \textbf{X}: X:平面上三角形全体所构成的集合, Y : \textbf{Y}: Y:平面上圆的全体的集合, f : X ⟶ Y f:\textbf{X}\longrightarrow \textbf{Y} f:XY x ⟼ y x\longmapsto y xy y y y是三角形 x x x的外接圆)。(这个映射的逆像不唯一,一个圆可以是许许多多三角形的外接圆,但是这个映射的像是确定的,因为确定一个三角形后,其外接圆唯一)


【例1.2.2】 X = { α , β , γ } \textbf{X}=\{\alpha, \beta, \gamma \} X={α,β,γ} Y = { a , b , c , d } \textbf{Y}=\{a,b,c,d\} Y={a,b,c,d},有映射 f : f ( α ) = a , f ( β ) = b , f ( γ ) = b f:f(\alpha)=a,f(\beta)=b,f(\gamma)=b f:f(α)=a,f(β)=b,f(γ)=b


映射有几个基本的要素:
(1) X = D f \textbf{X}=\textbf{D}_{f} X=Df,定义域
(2) Y \textbf{Y} Y,限制值域的范围(像不能跑出 Y \textbf{Y} Y
(3) f : f: f:像的唯一性。

  • 映射要求像必须唯一:
    【例】 X = R + = { x ∣ x ∈ R 且 x > 0 } \textbf{X}=\textbf{R}^{+}=\{x|x\in\textbf{R}且x>0\} X=R+={xxRx>0} f : X ⟶ Y f:\textbf{X}\longrightarrow \textbf{Y} f:XY x ⟼ y , ( y 2 = x ) x\longmapsto y,(y^{2}=x) xy,(y2=x),这样一个规则 f f f不能成为映射,比如 x = 4 , y = ± 2 x=4,y=\pm 2 x=4,y=±2,这样一个规则 f f f不能保证像的唯一性,对像域(值域)做限制就能改造成映射,对 Y = R \textbf{Y}=\textbf{R} Y=R,令 Y = R − \textbf{Y}=\textbf{R}^{-} Y=R(限制为负实数),这时候 f : X ⟶ Y f:\textbf{X}\longrightarrow \textbf{Y} f:XY x ⟼ y , ( y 2 = x ) x\longmapsto y,(y^{2}=x) xy,(y2=x)构成了一个映射。
  • 映射不要求逆像唯一。
  • 【定义1.2.2】 f f f X \textbf{X} X Y \textbf{Y} Y的一个映射,若逆像也具有唯一性,则称 f f f单射(injection)。数学表述为 x 1 ≠ x 2 ⇒ y 1 ≠ y 2 ( y 1 = f ( x 1 ) , y 2 = f ( x 2 ) ) x_{1}\ne x_{2}\Rightarrow y_{1}\ne y_{2}(y_{1}=f(x_{1}),y_{2}=f(x_{2})) x1=x2y1=y2(y1=f(x1),y2=f(x2)).
  • R f = Y \textbf{R}_{f}=\textbf{Y} Rf=Y,则称 f f f满射(surjection)。
  • f f f既是单射又是满射,则称 f f f双射(bijection),双射又称为一一对应。

1.10 逆映射

f : X ⟶ Y f:\textbf{X}\longrightarrow \textbf{Y} f:XY是单射,即对任意 y ∈ R f y\in\textbf{R}_{f} yRf,有唯一的 x ∈ X x\in\textbf{X} xX y y y对应。则 g : R f ⟶ X g:\textbf{R}_{f}\longrightarrow\textbf{X} g:RfX y ⟼ x ( f ( x ) = y ) y\longmapsto x(f(x)=y) yx(f(x)=y) g g g称为 f f f的逆映射,又记为 f − 1 f^{-1} f1
【例】 y = sin x , [ − π 2 , π 2 ] ⟶ [ − 1 , 1 ] , x ⟼ y = s i n x y=\text{sin}x,\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\longrightarrow[-1,1],x\longmapsto y=sinx y=sinx,[2π,2π][1,1],xy=sinx x = arcsin y , [ − 1 , 1 ] ⟶ [ − π 2 , π 2 ] , y ⟼ x ( sin x = y ) ) x=\text{arcsin}y,[-1,1]\longrightarrow\left[-\frac{\pi}{2}, \frac{\pi}{2}\right],y\longmapsto x(\text{sin}x=y)) x=arcsiny,[1,1][2π,2π],yx(sinx=y))

1.11 复合映射

有两个映射 g : X ⟶ U 1 , x ⟼ u = g ( x ) g:\textbf{X}\longrightarrow\textbf{U}_{1},x\longmapsto u=g(x) g:XU1,xu=g(x) f : U 2 ⟶ Y , u ⟼ y = f ( u ) f:\textbf{U}_{2}\longrightarrow\textbf{Y},u\longmapsto y=f(u) f:U2Y,uy=f(u),若 R g ⊂ U 2 = D f \textbf{R}_{g}\subset\textbf{U}_{2}=\textbf{D}_{f} RgU2=Df,则可以构造一个 f f f g g g的复合运算 f ∘ g : X ⟶ Y , x ⟼ y = f ( g ( x ) ) f\circ g:\textbf{X}\longrightarrow\textbf{Y},x\longmapsto y=f(g(x)) fg:XY,xy=f(g(x)),称为 f f f g g g复合映射
【注】要构造复合映射,前提是 g g g的值域要在 f f f的定义域里面。


【例1.2.5】若 X = Y = U 1 = U 2 = R \textbf{X}=\textbf{Y}=\textbf{U}_{1}=\textbf{U}_{2}=\textbf{R} X=Y=U1=U2=R g : X ⟶ U 1 , x ⟼ u = sin x g:\textbf{X}\longrightarrow\textbf{U}_{1},x\longmapsto u=\text{sin}x g:XU1,xu=sinx f : U 2 ⟶ Y , u ⟼ y = u 1 + u 2 f:\textbf{U}_{2}\longrightarrow\textbf{Y},u\longmapsto y=\frac{u}{1+u^{2}} f:U2Y,uy=1+u2u R g = [ − 1 , 1 ] ⊂ D f \textbf{R}_{g}=[-1,1]\subset\textbf{D}_{f} Rg=[1,1]Df,所以 f ∘ g : X ⟶ Y , x ⟼ y = sin x 1 + sin 2 x f\circ g:\textbf{X}\longrightarrow\textbf{Y},x\longmapsto y=\frac{\text{sin}x}{1+\text{sin}^{2}x} fg:XY,xy=1+sin2xsinx


【例1.2.6】 g : R ⟶ R , x ⟼ u = 1 − x 2 g:\textbf{R}\longrightarrow\textbf{R},x\longmapsto u=1-x^{2} g:RR,xu=1x2 f : R + ⟶ R , u ⟼ y = lg u f:\textbf{R}^{+}\longrightarrow\textbf{R},u\longmapsto y=\text{lg}u f:R+R,uy=lgu R g = ( − ∞ , 1 ] ⊄ D f = ( 0 , + ∞ ) \textbf{R}_{g}=(-\infty,1]\not\subset\textbf{D}_{f}=(0,+\infty) Rg=(,1]Df=(0,+),将 g g g的定义域缩小,如果将 g g g的定义域改为 ( − 1 , 1 ) (-1,1) (1,1),那么 u > 0 u>0 u>0就满足了 g g g的值域在 f f f的定义域( u > 0 u>0 u>0)中,改写 g ∗ : X = ( − 1 , 1 ) ⟶ R , x ⟼ u = 1 − x 2 g^{*}:\textbf{X}=(-1,1)\longrightarrow\textbf{R},x\longmapsto u=1-x^{2} g:X=(1,1)R,xu=1x2,此时 R g = ( 0 , 1 ] ⊂ D f = ( 0 , + ∞ ) \textbf{R}_{g}=(0,1]\subset\textbf{D}_{f}=(0,+\infty) Rg=(0,1]Df=(0,+),则 f ∘ g ∗ : X = ( − 1 , 1 ) ⟶ R , x ⟼ y = lg ( 1 − x 2 ) f\circ g^{*}:\textbf{X}=(-1,1)\longrightarrow\textbf{R},x\longmapsto y=\text{lg}(1-x^{2}) fg:X=(1,1)R,xy=lg(1x2)

  • 关于映射和逆映射的结论: f : X ⟶ Y , f − 1 : R f ⟶ X f:\textbf{X}\longrightarrow\textbf{Y},f^{-1}:\textbf{R}_{f}\longrightarrow\textbf{X} f:XY,f1:RfX
  • f − 1 ∘ f ( x ) = x , x ∈ X f^{-1}\circ f(x)=x,x\in\textbf{X} f1f(x)=x,xX
  • f ∘ f − 1 ( x ) = y , y ∈ R f f\circ f^{-1}(x)=y,y\in\textbf{R}_{f} ff1(x)=y,yRf

【例】 arcsin ( sin x ) = x , x ∈ [ − π 2 , π 2 ] \text{arcsin}(\text{sin}x)=x,x\in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] arcsin(sinx)=x,x[2π,2π] sin ( arcsin y ) = y , y ∈ [ − 1 , 1 ] \text{sin}(\text{arcsin}y)=y,y\in[-1,1] sin(arcsiny)=y,y[1,1]

  • 25
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

魔理沙偷走了BUG

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值