YOLOv5模型训练

参考:https://xugaoxiang.com/2020/07/02/yolov5-training/

数据下载(如带没带口罩):https://public.roboflow.com/

软硬件环境

  • ubuntu 18.04 64bit
  • anaconda with 3.7
  • nvidia gtx 1070Ti
  • cuda 10.1
  • pytorch 1.5
  • YOLOv5

视频看这里

 

此处是youtube的播放链接,需要科学上网。喜欢我的视频,请记得订阅我的频道,打开旁边的小铃铛,点赞并分享,感谢您的支持。

YOLOv5环境配置

请参考之前的文章,YOLOv5目标检测

使用COCO数据集

YOLOv5的预训练模型是基于 COCO 数据集,如果自己想去复现下训练过程,可以依照下面的命令

$ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
                                         yolov5m                                48
                                         yolov5l                                32
                                         yolov5x                                16

COCO的数据集可以通过data文件夹下get_coco2017.sh脚本进行下载,包含图片和lable文件。COCO的数据集实在是太大了,整个压缩包有18G,考虑到自己到的网速还有机器的算力,还是洗洗睡吧。。。

制作自己的数据集

如果没有对应目标的公开数据集,那就只有自己出手收集了,图片到手后,接下来就是艰辛的打标签工作了,这里使用工具LabelImg,下载地址是

https://github.com/tzutalin/labelImg/releases/tag/v1.8.1

LabelImg使用Qt做了图形化的界面,操作还是很方便的,这也是选择它的理由,它提供了默认的class,如果你不需要这些类型的话,可以将其删除

 

接下来就可以打开exe文件,点击Open导入图片,按下快捷键w,选定目标后,会弹出输入框,写上class名称,就可以了,如果有多个目标,那就继续标

 

labelImg还支持文件夹的导入,在标完一张后,在左侧选择Next Image就可以切换到下一张继续了。输出格式部分,目前labelImg支持YOLOPascalOVC2种格式,前者标签信息是存储在txt文件中,而后者是存储在xml

打完标签后,就可以进行保存了,图片和标签文件我们分开存放,但是文件名是对应的,只是扩展名不同

 

最后来看看标签文件的内容

 

一行代表一个目标,格式是

class x_center y_center width height

第一列是class的索引,计数从0开始,比如这里的0代表的是basketball,1代表的是face;后4列是x_center/image_widthy_center/image_heightwidth/image_widthheight/image_height,取值范围是0 ~ 1

使用公开的数据集进行训练

ROBOFLOW 提供了一些公开的数据集,我们下载其中的口罩数据集进行训练,链接是 https://public.roboflow.ai/object-detection/mask-wearing, 如果原网站无法访问的话,可以到下面的链接下载

下载下来是一个压缩包,解压后,文件夹内的文件结构是这样的

 

其中文件夹train包含了参加训练的图片以及对应的label文件,两者只有扩展名不同而已,目前图片只有105张。我们将包含数据集的文件夹重命名为mask,存储在yolov5工程的同级目录下

 

接着修改mask/data.yaml文件内容为

(base) xugaoxiang@1070Ti:~/Works/github/mask$ cat data.yaml
train: ../mask/train/images
val: ../mask/valid/images

nc: 2
names: ['mask', 'no-mask']

最后修改yolov5/models/yolov5s.yaml,将nc = 80修改为nc = 2,因为数据集中只有maskno-mask2个类别

接下来执行训练命令

cd yolov5
python train.py --img 640 --batch 16 --epochs 300 --data ../mask/data.yaml --cfg models/yolov5s.yaml --weights '' 

训练结束后,在weights文件夹下就生成了best.ptlast.pt,到mask/test/images找些图片测试一下

python detect.py --weight weights/best.pt --source ../mask/test/images/1224331650_g_400-w_g_jpg.rf.b816f49e2d84044fc997a8cbd55c347d.jpg

 

 

效果还算ok。感兴趣的话,自己动手试试吧

v3.0版本

很多朋友反应,在训练时出现下面的错误

 

这个错误是由于python环境中的pyqt引起的,卸载pyqt就好

pip uninstall pyqt5

这里多说一句,如果使用的是anaconda的环境,在安装好后,在base的环境中不要去安装任何第三方库。针对不同的项目或者工程,创建独立的虚拟环境,然后安装依赖的库,就不会出现类似的错误了

 

参考资料

已标记关键词 清除标记
<span style="color:#E53333;"><span style="color:#000000;"> </span></span> <p style="font-size:16px;"> <span style="color:#3A4151;">课程演示环境:Ubuntu </span> </p> <p style="font-size:16px;"> </p><p> <span><span style="color:#0070C0;">需要学习Windows系统YOLOv4的同学请前往《Windows版YOLOv4目标检测实战:人脸口罩佩戴检测》</span></span> </p> <p> <span><span style="color:#0070C0;">课程链接:https://edu.csdn.net/course/detail/29123</span></span>  </p> <p style="font-size:16px;"> <span style="background-color:#FFFFFF;">当前,人脸口罩佩戴检测是急需的应用,而YOLOv4是最新的强悍的目标检测技术。本课程使用</span><strong><span style="color:#C00000;">YOLOv4实现实时的人脸口罩佩戴检测</span></strong><span style="background-color:#FFFFFF;">。课程提供</span><strong><span style="color:#C00000;">超万张已标注人脸口罩数据集</span></strong><span style="background-color:#FFFFFF;">。训练后的YOLOv4可对真实场景下人脸口罩佩戴进行</span><span style="background-color:#FFFFFF;">高精度地</span><span style="background-color:#FFFFFF;">实时检测。</span> </p> <p style="font-size:16px;"> <span style="background-color:#FFFFFF;"><br /></span> </p> <p style="font-size:16px;"> <span><span style="background-color:#FFFFFF;"><span style="font-size:16px;">本课程会讲述本项目超万张人脸口罩数据集的制作方法,包括使用labelImg标注工具标注以及如何使用Python代码对第三方数据集进行修复和清洗。</span><br /></span></span> </p> <p style="font-size:16px;"> <span><span style="background-color:#FFFFFF;"><br /></span></span> </p> <p style="font-size:16px;"> 本课程的YOLOv4使用AlexyAB/darknet,在Ubuntu系统上做项目演示。具体项目过程包括:安装YOLOv4、训练集和测试集自动划分、修改配置文件、训练网络模型、测试训练出的网络模型、性能统计(mAP计算和画出PR曲线)和先验框聚类分析。  </p> <p style="font-size:16px;"> <br /></p> <p style="font-size:16px;"> <br /></p> <p style="font-size:16px;"> <img src="https://img-bss.csdn.net/202005200601524939.jpg" alt="" /></p> <p style="font-size:16px;"> <strong>YOLOv4人脸口罩佩戴检测效果</strong> </p> <p style="font-size:16px;"> <img src="https://img-bss.csdn.net/202005200603052758.jpg" alt="" /></p> <p style="font-size:16px;"> <br /></p> <span style="color:#000000;"></span>
相关推荐
<p class="MsoNormal"> <span style="font-family:'微软雅黑',sans-serif;">YOLO</span><span style="font-family:'微软雅黑',sans-serif;">系列是基于深度学习的端到端实时目标检测方法。 <span>PyTorch</span>版的<span>YOLOv5</span>轻量而性能高,更加灵活和便利。</span><span style="font-family:微软雅黑, sans-serif;"> </span> </p> <p class="MsoNormal"> <span style="font-family:'微软雅黑',sans-serif;">本课程将手把手地教大家使用<span>labelImg</span>标注和使用<span>YOLOv5</span>训练自己的数据集。课程实战分为两个项目:单目标检测(足球目标检测)和多目标检测(足球和梅西同时检测)。</span><span style="font-family:微软雅黑, sans-serif;"> </span> </p> <p class="MsoNormal"> <span style="font-family:'微软雅黑',sans-serif;">本课程的<span>YOLOv5</span>使用<span>ultralytics/yolov5</span>,在<span style="color:#e03e2d;"><strong><span>Windows</span></strong></span>系统上做项目演示。包括:安装<span>YOLOv5</span>、标注自己的数据集、准备自己的数据集、修改配置文件、训练自己的数据集、测试训练出的网络模型和性能统计。</span><span style="font-family:微软雅黑, sans-serif;"> </span> </p> <p class="MsoNormal"> <span style="font-family:微软雅黑, sans-serif;">希望学习Ubuntu上演示的同学,请前往 </span><span style="font-family:微软雅黑, sans-serif;">《</span><span style="font-family:微软雅黑, sans-serif;">YOLOv5(PyTorch)</span><span style="font-family:微软雅黑, sans-serif;">实战:训练自己的数据集(Ubuntu)》课程链接:https://edu.csdn.net/course/detail/30793</span><span style="font-family:宋体;"><span style="font-size:14px;"> </span></span> </p> <p style="margin-left:0cm;">   </p> <p style="margin-left:0cm;"> 本人推出了有关YOLOv5目标检测的系列课程。请持续关注该系列的其它视频课程,包括: </p> <p> 《YOLOv5(PyTorch)目标检测实战:训练自己的数据集》 </p> <p> Ubuntu系统 <strong><a href="https://edu.csdn.net/course/detail/30793"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/30793</span></a></strong> </p> <p> Windows系统 <strong><a href="https://edu.csdn.net/course/detail/30923"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/30923</span></a></strong> </p> <p> 《YOLOv5(PyTorch)目标检测:原理与源码解析》<strong><a href="https://edu.csdn.net/course/detail/31428"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/31428</span></a></strong> </p> <p> 《YOLOv5(PyTorch)目标检测实战:Flask Web部署》<strong><a href="https://edu.csdn.net/course/detail/31087"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/31087</span></a></strong> </p> <p> 《YOLOv5(PyTorch)目标检测实战:TensorRT加速部署》<strong><a href="https://edu.csdn.net/course/detail/32303"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/32303</span></a></strong> </p> <p> <img src="https://img-bss.csdnimg.cn/202010090636458614.jpg" alt="课程内容" width="880" height="356" /> </p> <p> <img src="https://img-bss.csdnimg.cn/202010090637068681.jpg" alt="技巧" width="880" height="706" /> </p> <p> <img src="https://img-bss.csdnimg.cn/202010090637267536.jpg" alt="功能" width="880" height="913" /> </p>
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页