AcWing 361 观光奶牛

题目描述:

给定一张L个点、P条边的有向图,每个点都有一个权值f[i],每条边都有一个权值t[i]。

求图中的一个环,使“环上各点的权值之和”除以“环上各边的权值之和”最大。

输出这个最大值。

注意:数据保证至少存在一个环。

输入格式

第一行包含两个整数L和P。

接下来L行每行一个整数,表示f[i]。

再接下来P行,每行三个整数a,b,t[i],表示点a和b之间存在一条边,边的权值为t[i]。

输出格式

输出一个数表示结果,保留两位小数。

数据范围

2≤L≤1000,
2≤P≤5000,
1≤f[i],t[i]≤1000

输入样例:

5 7
30
10
10
5
10
1 2 3
2 3 2
3 4 5
3 5 2
4 5 5
5 1 3
5 2 2

输出样例:

6.00

分析:

 本题考察01分数规划。01分数规划是这样的一类问题,有一堆物品,每一个物品有一个收益ai,一个代价bi,我们要求一个方案使选择的∑ai / ∑bi 最大。比如说在n个物品中选k个物品,使得∑ai / ∑bi 最大,并且我们知道ai和bi的范围,间接就知道了∑ai / ∑bi 的范围,有范围的问题如果再具有单调性就可以用二分解决,如果我们能够知道对于某个mid,存在∑ai / ∑bi  >= mid,就说明最终的解不小于mid了,这就是本问题的单调性。要使∑ai / ∑bi  >= mid,只要mid * ∑bi  <= ∑ai即可,即∑(mid*bi - ai) <= 0,所以可以按照 mid*bi - ai的大小排序,前k个物品之和小于0就说明这样的mid是存在的了。

对于本题而言,既存在点权又存在边权不好计算。要使∑fi / ∑ti最大,只需要像上面解决一般的01分数规划问题那样二分即可,如果∑(mid*ti - fi) <= 0,就说明这样的mid存在。本题又是求图中一个环上的点满足这样的条件,所以本质上就是看有没有负权回路存在。一般的01规划问题ai和bi一一对应,而本题中一个点可能连接多条边,但是一条边有且仅有两个顶点,我们可以把每个顶点都收缩到它的各条出边上(收缩到入边上也是一样道理)。或者说,原图中有点权f[i],边权t[i],我们现在是要构造一张新图,新图的边权为mid*ti - fi,只要这张新图存在负权回路,就说明这样的mid是存在的。

另外需要注意的是mid的取值是浮点数,我们在对浮点数做二分时,mid不能随便加减一了,不论存不存在这样的mid,l或者r都只能等于mid,整数二分的上下取整问题对于浮点数二分也是不存在的。

本题虽然看起来复杂,但是只需要对图的边权做下映射,很容易发现就是求图中有没有负环的问题,解决起来还是比较简单的,总的代码如下:

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 1005,M = 5005;
int idx,h[N],e[M],w[M],ne[M];
int n,m,f[N],q[N],cnt[N];
double d[N];
bool st[N];
void add(int a,int b,int c){
    e[idx] = b,w[idx] = c,ne[idx] = h[a],h[a] = idx++;
}
bool check(double mid){
    int hh =0,tt = 0;
    memset(cnt,0,sizeof cnt);
    memset(d,0,sizeof d);
    memset(st,false,sizeof st);
    for(int i = 1;i <= n;i++){
        q[tt++] = i;
        st[i] = true;
    }
    while(hh != tt){
        int u = q[hh++];
        if(hh == N) hh = 0;
        st[u] = false;
        for(int i = h[u];~i;i = ne[i]){
            int j = e[i];
            if(d[u] + w[i] * mid - f[u] < d[j]){
                d[j] = d[u] + w[i] * mid - f[u];
                cnt[j] = cnt[u] + 1;
                if(cnt[j] >= n) return true;
                if(!st[j]){
                    q[tt++] = j;
                    if(tt == N) tt = 0;
                    st[j] = true;
                }
            }
        }
    }
    return false;
}
int main(){
    cin>>n>>m;
    for(int i = 1;i <= n;i++)   cin>>f[i];
    int a,b,c;
    memset(h,-1,sizeof h);
    for(int i = 0;i < m;i++){
        cin>>a>>b>>c;
        add(a,b,c);
    }
    double l = 0,r = 1000;
    while(l < r - 1e-4){
        double mid = (l + r) / 2;
        if(check(mid))  l = mid;
        else    r = mid;
    }
    printf("%.2lf\n",l);
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值