负环——观光奶牛(0,1分数规划)

观光奶牛

给定一张L个点、P条边的有向图,每个点都有一个权值f[i],每条边都有一个权值t[i]。

求图中的一个环,使“环上各点的权值之和”除以“环上各边的权值之和”最大。

输出这个最大值。

注意:数据保证至少存在一个环。

输入格式
第一行包含两个整数L和P。

接下来L行每行一个整数,表示f[i]。

再接下来P行,每行三个整数a,b,t[i],表示点a和b之间存在一条边,边的权值为t[i]。

输出格式
输出一个数表示结果,保留两位小数。

数据范围
2 ≤ L ≤ 1000 2≤L≤1000 2L1000,
2 ≤ P ≤ 5000 2≤P≤5000 2P5000,
1 ≤ f [ i ] , t [ i ] ≤ 1000 1≤f[i],t[i]≤1000 1f[i],t[i]1000
输入样例:
5 7
30
10
10
5
10
1 2 3
2 3 2
3 4 5
3 5 2
4 5 5
5 1 3
5 2 2
输出样例:
6.00

题解:

首先说下0,1规划一般的问法就是一个分数形式的表达式的最大值。01分数规划一般都是使用二分来求解的。这道题我们来分析一下他求的是一个环上点权之和/环上边权之和的最大值。又有点又有边,我们一般是把点权分到边上这样方便一些。
∑ i n ( f ( i ) ) / ∑ i n ( f ( i ) ) > m i d \sum_{i}^{n}(f(i))/\sum_{i}^{n}(f(i))>mid in(f(i))/in(f(i))>mid
∑ i n ( f ( i ) ) > m i d ∗ ∑ i n ( f ( i ) ) \sum_{i}^{n}(f(i))>mid*\sum_{i}^{n}(f(i)) in(f(i))>midin(f(i))
当我们把点权分到了边权上面继续化简得到
∑ i n ( f ( i ) − m i d ∗ ( f ( i ) ) ) > 0 \sum_{i}^{n}(f(i)-mid*(f(i)))>0 in(f(i)mid(f(i)))>0
这一步目的就很清晰了,也就是求一个正环。mid是我们二分的一个答案,所以我们在spfa的是改成一个最长路就可以了。

#include<bits/stdc++.h>
using namespace std;
const int N=1e5+7;
int ne[N],e[N],we[N],wf[N],head[N],cnt;
int vis[N],n,m,con[N];
double dis[N];
void add(int a,int b,int c)
{
	e[cnt]=b,we[cnt]=c,ne[cnt]=head[a],head[a]=cnt++;
}
bool spfa(double mid)
{
    memset(dis,0,sizeof dis);
    memset(vis,0,sizeof vis);
    memset(con,0,sizeof con);
	queue<int> q;
	for(int i=1;i<=n;i++) q.push(i),vis[i]=1;
	while(!q.empty()){
		int u=q.front(); q.pop();
		vis[u]=0;
		for(int i=head[u];i!=-1;i=ne[i]){
			int j=e[i];
			if(dis[j]<dis[u]+wf[u]-mid*we[i]){
				dis[j]=dis[u]+wf[u]-mid*we[i];
				con[j]=con[u]+1;
				if(con[j]>=n) return 1;
				if(!vis[j]){
					q.push(j);
					vis[j]=1;
				}
			}
		}
	}
	return 0;
}
int main()
{
	cin>>n>>m;
	memset(head,-1,sizeof head);
	for(int i=1;i<=n;i++) cin>>wf[i];
	for(int i=1;i<=m;i++){
		int a,b,c; cin>>a>>b>>c;
		add(a,b,c);
	}
	double l=0,r=1e6;
	while(r-l>1e-4){
		double mid=(l+r)/2;
		if(spfa(mid)) l=mid;
		else r=mid;
	}
	printf("%.2lf\n",l);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值