题目描述
A graph which is connected and acyclic can be considered a tree. The height of the tree depends on the selected root. Now you are supposed to find the root that results in a highest tree. Such a root is called the deepest root.
输入描述:
Each input file contains one test case. For each case, the first line contains a positive integer N (<=10000) which is the number of nodes, and hence the nodes are numbered from 1 to N. Then N-1 lines follow, each describes an edge by given the two adjacent nodes' numbers.
输出描述:
For each test case, print each of the deepest roots in a line. If such a root is not unique, print them in increasing order of their numbers. In case that the given graph is not a tree, print "Error: K components" where K is the number of connected components in the graph.
输入例子:
5
1 2
1 3
1 4
2 5
输出例子:
3
4
5
这道题目的大意是给你一个图,首先判断是不是一棵树,即一个无向无环图,然后找出具有最大深度的根结点。
有n个顶点,n-1条边的连通图一定是无环的。
首先用并查集求出一共有几个团,多于1个那就是不是树如果是一棵树。
对于每一个根结点,到其他结点的路径只有一条,否则就有环了。所以每个点的深度是唯一的。
任选一个结点作为根结点,假设一个结点的深度是n,相当于根结点相对于这个结点的深度是n,另一个结点的深度是m,相当于相对于这个结点的深度是n+m,那么图中距离最远(深度最深)的结点对一定是两个端点,其中一个必定深度最大,把深度最大的结点都包含到解集中去。
任取一个深度最大的结点作为根结点,再将相对于这个结点深度最大的结点加入到解集中,此步骤是为了防止上面深度最大的结点只有一个,即距离最远的结点对是深度最大和次大的。
// pat.cpp : 定义控制台应用程序的入口点。
//
// pat.cpp : 定义控制台应用程序的入口点。
//
//#include "stdafx.h"
#include"stdio.h"
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
#include<set>
using namespace std;
const int maxn=10010;
int n;
vector<int>G[maxn];
int father[maxn];
int u,v;
int d[maxn]={0};
int findfather(int x){
while(x!=father[x])x=father[x];
return x;
}
void uni(int a,int b){
int fa=findfather(a);
int fb=findfather(b);
if(fa!=fb)father[fa]=fb;
}
int hashtable[maxn]={0};
int vis[maxn]={0};
int deepest=0;
void dfs(int x){
//cout<<x<<" ";
//int ans=0;
for(int i=0;i<G[x].size();i++){
if(vis[G[x][i]]==0){//知道为什么要用vis吗? 因为这是无向图,存在子节点到父节点的边
vis[G[x][i]]=1;
d[G[x][i]]=d[x]+1;
deepest=max(deepest,d[G[x][i]]);
dfs(G[x][i]);
}
}
//return ans;
}
int main(){
// freopen("c://jin.txt","r",stdin);
cin>>n;
for(int i=1;i<=n;i++)
father[i]=i;
for(int i=0;i<n-1;i++)
{ cin>>u>>v;
G[u].push_back(v);
G[v].push_back(u);
uni(u,v);
}
int ans=0;
for(int i=1;i<=n;i++)
{int f=findfather(i);
if(hashtable[f]==0){
hashtable[f]=1;
ans++;
}
}
if(ans!=1)printf("Error: %d components\n", ans);
else{
memset(vis,0,sizeof(vis));
vis[1]=1;
dfs(1);
int i;
set<int>s;
for(i=2;i<=n;i++)
{if(d[i]==deepest)s.insert(i);}
memset(vis,0,sizeof(vis));
deepest=0;
d[*(s.begin())]=0;
vis[*(s.begin())]=1;
dfs(*(s.begin()));//知道这里s.begin()为什么不用it吗,因为这里用了it,下面遍历还是要让it=s.begin(),因为set插入值得时候头指针会变
d[*(s.begin())]=deepest;
for(int i=1;i<=n;i++)
if(d[i]==deepest) s.insert(i);
set<int>::iterator it=s.begin();
for(;it!=s.end();it++)
cout<<*(it)<<endl;
}
//freopen("CON","r",stdin);
//system("pause");
return 0;
}