PAT Deepest Root

13 篇文章 0 订阅

Deepest Root (25)

时间限制 1000 ms  内存限制 65536 KB  代码长度限制 100 KB  判断程序 Standard  (来自 小小)

题目描述

A graph which is connected and acyclic can be considered a tree.  The height of the tree depends on the selected root.  Now you are supposed to find the root that results in a highest tree.  Such a root is called the deepest root.

输入描述:

Each input file contains one test case.  For each case, the first line contains a positive integer N (<=10000) which is the number of nodes, and hence the nodes are numbered from 1 to N.  Then N-1 lines follow, each describes an edge by given the two adjacent nodes' numbers.


输出描述:

For each test case, print each of the deepest roots in a line.  If such a root is not unique, print them in increasing order of their numbers.  In case that the given graph is not a tree, print "Error: K components" where K is the number of connected components in the graph.

输入例子:

5
1 2
1 3
1 4
2 5

输出例子:

3
4
5
这道题目的大意是给你一个图,首先判断是不是一棵树,即一个无向无环图,然后找出具有最大深度的根结点。
有n个顶点,n-1条边的连通图一定是无环的。
首先用并查集求出一共有几个团,多于1个那就是不是树如果是一棵树。
对于每一个根结点,到其他结点的路径只有一条,否则就有环了。所以每个点的深度是唯一的。
任选一个结点作为根结点,假设一个结点的深度是n,相当于根结点相对于这个结点的深度是n,另一个结点的深度是m,相当于相对于这个结点的深度是n+m,那么图中距离最远(深度最深)的结点对一定是两个端点,其中一个必定深度最大,把深度最大的结点都包含到解集中去。
任取一个深度最大的结点作为根结点,再将相对于这个结点深度最大的结点加入到解集中,此步骤是为了防止上面深度最大的结点只有一个,即距离最远的结点对是深度最大和次大的。
 
  
// pat.cpp : 定义控制台应用程序的入口点。
//


// pat.cpp : 定义控制台应用程序的入口点。
//

//#include "stdafx.h"
#include"stdio.h"
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
#include<set>
using namespace std;
const int maxn=10010;
int n;
vector<int>G[maxn];
int father[maxn];
int u,v;
int d[maxn]={0};

int findfather(int x){
while(x!=father[x])x=father[x];
return x;
}

void uni(int a,int b){
int fa=findfather(a);
int fb=findfather(b);
if(fa!=fb)father[fa]=fb;

}
int hashtable[maxn]={0};
int vis[maxn]={0};
int deepest=0;
void dfs(int x){
	//cout<<x<<" ";
	//int ans=0;
	for(int i=0;i<G[x].size();i++){
		if(vis[G[x][i]]==0){//知道为什么要用vis吗? 因为这是无向图,存在子节点到父节点的边
		    vis[G[x][i]]=1;
            d[G[x][i]]=d[x]+1;
		    deepest=max(deepest,d[G[x][i]]);           
            dfs(G[x][i]);
		}
	}
   
	//return ans;

}
int main(){
//	freopen("c://jin.txt","r",stdin);
	cin>>n;
	for(int i=1;i<=n;i++)
		father[i]=i;
	for(int i=0;i<n-1;i++)
	{	cin>>u>>v;
	G[u].push_back(v);
	G[v].push_back(u);
	uni(u,v);
	}
	int ans=0;
	for(int i=1;i<=n;i++)
	{int f=findfather(i);
	if(hashtable[f]==0){
	hashtable[f]=1;
	ans++;
	}
	
	}
	if(ans!=1)printf("Error: %d components\n", ans);
	else{
	memset(vis,0,sizeof(vis));
	vis[1]=1;
	dfs(1);
        int i;
        set<int>s;
        for(i=2;i<=n;i++)
        {if(d[i]==deepest)s.insert(i);}
     memset(vis,0,sizeof(vis));
	 deepest=0;
	 d[*(s.begin())]=0;
     vis[*(s.begin())]=1;
	 dfs(*(s.begin()));//知道这里s.begin()为什么不用it吗,因为这里用了it,下面遍历还是要让it=s.begin(),因为set插入值得时候头指针会变
	 d[*(s.begin())]=deepest;
      
        for(int i=1;i<=n;i++)
           if(d[i]==deepest) s.insert(i);
          set<int>::iterator it=s.begin();
	for(;it!=s.end();it++)
        cout<<*(it)<<endl;
        
	 
	
	
	
    
	}


	//freopen("CON","r",stdin);
   //system("pause");

	return 0;
}


 
  
 
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值