DAG最长路

struct edge{
	int v,w;

};
vector<edge>G[maxn];

//DAG最长路
//以i为起点,不固定终点

int dp[maxn];
int choice[maxn];
int DP(int i){
	if(dp[i]>0)return dp[i];
	for(int j=0;j<G[i].size();j++)
	{	int v=G[i][j].v;
	int w=G[i][j].w;
	int temp=DP(v)+w;
	if(dp[i]<temp){
		dp[i]=temp;choice[i]=v;
	}}
	return dp[i];
}
//固定终点T,以i为起点的最长路,dp[t]=0,当某点i的出度为0时,永远不可能到达t,dp[i]=-inf;
int vis[maxn]={0};
int DP(int i){
	if(vis[i]==1)return dp[i];
	vis[i]=1;
	for(int j=0;j<G[i].size();j++)
	{int v=G[i][j].v;
	int w=G[i][j].w;
	int temp=DP(v)+w;
	if(dp[i]<temp){
		dp[i]=temp;choice[i]=v;
	}}
	return dp[i];

	}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Dijkstra算法是一种用于求解最短径的算法,而不是最长。如果要求解最长,需要使用其他算法,如Acyclic Longest Path算法或Bellman-Ford算法。这里以Acyclic Longest Path算法为例进行介绍。 Acyclic Longest Path算法是一种用于有向无环图(DAG)中求解最长的动态规划算法。它的基本思想是对DAG的所有节点进行拓扑排序,并按照拓扑序列的顺序依次计算每个节点的最长。具体地,假设有一个有向无环图DAG=(V,E),其中V表示节点集合,E表示边集合。对DAG进行拓扑排序,得到节点的拓扑序列。对于拓扑序列中的每个节点v,计算其前驱节点的最长,然后将最长加上v到其前驱节点的边权值,得到v的最长。重复上述过程直到计算完所有节点的最长。 下面是一个使用Acyclic Longest Path算法求解DAG最长的C++代码实现: ```c++ #include <iostream> #include <vector> #include <queue> using namespace std; const int INF = 0x3f3f3f3f; int main() { int n, m; cin >> n >> m; vector<vector<pair<int, int>>> graph(n); // 邻接表表示图 vector<int> in_degree(n, 0); // 记录每个节点的入度 vector<int> dist(n, -INF); // 记录每个节点的最长 for (int i = 0; i < m; i++) { int u, v, w; cin >> u >> v >> w; graph[u].push_back({v, w}); // 添加边 in_degree[v]++; // 统计入度 } queue<int> q; // 拓扑排序所需队列 // 将入度为0的节点加入队列 for (int i = 0; i < n; i++) { if (in_degree[i] == 0) { q.push(i); dist[i] = 0; // 初始距离为0 } } while (!q.empty()) { int u = q.front(); q.pop(); for (auto p : graph[u]) { int v = p.first, w = p.second; dist[v] = max(dist[v], dist[u] + w); // 更新最长 if (--in_degree[v] == 0) q.push(v); // 将入度为0的节点加入队列 } } for (int i = 0; i < n; i++) { cout << "Node " << i << " longest path: " << dist[i] << endl; } return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值