第53步 深度学习图像识别:Bottleneck Transformer建模(Pytorch)

本文介绍了BottleneckTransformer(BotNet)模型,它是Google提出的一种融合Transformer和ResNet优点的深度学习模型,适用于计算机视觉任务。通过PyTorch框架,展示了如何使用BotNet进行迁移学习,以识别肺结核和健康人的胸片。实验中,模型经过数据增强和训练,达到了较好的识别效果,并通过混淆矩阵和AUC曲线分析了模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于WIN10的64位系统演示

一、写在前面

(1)Bottleneck Transformer

"Bottleneck Transformer"(简称 "BotNet")是一种深度学习模型,在2021年由Google的研究人员在论文"Bottleneck Transformers for Visual Recognition"中提出。

BotNet的核心思想是将Transfor

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jet4505

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值