最短路 floyd dijkstra bellman-ford总结

本文深入探讨图的遍历中最短路问题,包括Floyd、Dijkstra和Bellman-Ford算法。Floyd算法通过合并路径寻找最短路,Dijkstra算法适用于单元最短路问题,而Bellman-Ford能处理负权值问题。文章还介绍了堆排序的原理和实现。
摘要由CSDN通过智能技术生成

第五章

图的遍历最短路

一.搜索

1.Floyd

2.Dijkstra

3.Bellman-ford

从理解的难度来划分2 3 1 4

Floyd借助的是数组表示

图形的遍历分为有向图和无向图

有向图输入城市ab之间的距离是c

Mapsa】【b=c

无向图

Mapsa】【b=mapsb】【a=c

Floyd

注意路的合并

因为直达的路不一定是最短的

所以要考虑合并问题

 for(int i=1;i<=n;i++)

        {

            for(int j=1;j<=n;j++)

            {

                for(int k=1;k<=n;k++)

                {

                    maps[j][i]=maps[i][j]=min(maps[i][j],maps[i][k]+maps[k][j]);

                }

            }

        }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值