Bellman_ford算法+spfa算法+floyd算法笔记

目录

一、Bellman_ford算法

1.如何实现+代码模板

2.相关例题

 二、spfa算法

代码模板:

相关例题:

三、floyd算法


一、Bellman_ford算法

bellman算法主要适用于有限边问题,问题中边的权值可能为负,当然因为边有限,不会出现负无穷的结果

1.如何实现+代码模板

1.将dis数组初始值设为正无穷,并将dis[1]设为0;

memset(dis, 0x3f, sizeof dis);
	dis[1] = 0;

2.bellman的双循环结构

for (int i = 0; i < k; i++)//k条边的限制,k次循环
	{
		memcpy(backup, dis, sizeof dis);
		for (int j = 0; j < m; j++)
		{
			int a = stu[j].a, b = stu[j].b, w = stu[j].w;
		}
	}

其中,备份出来的backup很重要.

假设k=1的情况下,比如1->2是一条边了,如果不对其进行备份,那么2就会更新成起点2->3不会是第二次迭代,而是第一次迭代,如此下去,k条边的限制形同虚设,所以要将dis数组备份,并使用backup数组进行更新。

3.如果最终仍为dis[n]仍为正无穷返回-1,否则返回dis[n];

if (dis[n] > 0x3f3f3f3f / 2)return -1;
	return dis[n];

为什么是>03f3f3f3f/2 是因为,到最后一个更新的时候,后面一条边可能是负数,则就不是0x3f3f3f3f了

代码模板:

int n, m;       // n表示点数,m表示边数
int dist[N];        // dist[x]存储1到x的最短路距离

struct Edge     // 边,a表示出点,b表示入点,w表示边的权重
{
    int a, b, w;
}edges[M];

// 求1到n的最短路距离,如果无法从1走到n,则返回-1。
int bellman_ford()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    // 如果第n次迭代仍然会松弛三角不等式,就说明存在一条长度是n+1的最短路径,由抽屉原理,路径中至少存在两个相同的点,说明图中存在负权回路。
    for (int i = 0; i < n; i ++ )
    {
        for (int j = 0; j < m; j ++ )
        {
            int a = edges[j].a, b = edges[j].b, w = edges[j].w;
            if (dist[b] > dist[a] + w)
                dist[b] = dist[a] + w;
        }
    }

    if (dist[n] > 0x3f3f3f3f / 2) return -1;
    return dist[n];
}
作者:yxc
链接:https://www.acwing.com/blog/content/405/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

2.相关例题

例题来自Acwing

→原题链接

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数

请你求出从 11 号点到 n 号点的最多经过 k 条边的最短距离,如果无法从 11 号点走到 n号点,输出 impossible

注意:图中可能 存在负权回路 。

输入格式

第一行包含三个整数 n,m,k。

接下来 m行,每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。

点的编号为 1∼n1。

输出格式

输出一个整数,表示从 11 号点到 n 号点的最多经过 k 条边的最短距离。

如果不存在满足条件的路径,则输出 impossible

数据范围

1≤n,k≤500
1≤m≤10000
1≤x,y≤n
任意边长的绝对值不超过 1000010000。

输入样例:

3 3 1
1 2 1
2 3 1
1 3 3

输出样例:

3

Ac代码:

#include<bits/stdc++.h>
using namespace std;
const int N =510,M=10010;
int dis[N],backup[N];
int n,m,k;
struct ss
{
    int a,b,w;
}stu[M];
int bellman()
{
    memset(dis,0x3f,sizeof dis);
    dis[1]=0;
    for(int i=0;i<k;i++)
    {
        memcpy(backup,dis,sizeof dis);//copy
        for(int j=0;j<m;j++)
        {
            int a=stu[j].a,b=stu[j].b,w=stu[j].w;
            dis[b]=min(dis[b],backup[a]+w);
        }
    }
    if(dis[n]>0x3f3f3f3f/2)return -1;
    return dis[n];
}
int main()
{
    scanf("%d%d%d",&n,&m,&k);
    for(int i=0;i<m;i++)
    {
        int a,b,w;
        scanf("%d%d%d",&a,&b,&w);
        stu[i]={a,b,w};
    }
    int t =bellman();
    if(t == -1)printf("impossible");
    else
    printf("%d",t);
}

 二、spfa算法

spfs算法一般时间复杂度为O(m)但是如果题目卡数据的话,时间复杂度可能会达到O(mn);

spfa算法与dijkstra算法和bellman算法都有相似之处

代码模板:

int n;      // 总点数
int h[N], w[N], e[N], ne[N], idx;       // 邻接表存储所有边
int dist[N];        // 存储每个点到1号点的最短距离
bool st[N];     // 存储每个点是否在队列中

// 求1号点到n号点的最短路距离,如果从1号点无法走到n号点则返回-1
int spfa()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    queue<int> q;
    q.push(1);
    st[1] = true;

    while (q.size())
    {
        auto t = q.front();
        q.pop();

        st[t] = false;

        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                if (!st[j])     // 如果队列中已存在j,则不需要将j重复插入
                {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }

    if (dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}


作者:yxc
链接:https://www.acwing.com/blog/content/405/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

相关例题:

例题来自Acwing

→原题链接

给定一个 n个点 m条边的有向图,图中可能存在重边和自环, 边权可能为负数

请你判断图中是否存在负权回路。

输入格式

第一行包含整数 n 和 m。

接下来 m行每行包含三个整数 x,y,z表示存在一条从点 x 到点 y 的有向边,边长为 z。

输出格式

如果图中存在负权回路,则输出 Yes,否则输出 No

数据范围

1≤n≤2000
1≤m≤10000
图中涉及边长绝对值均不超过 1000010000。

输入样例:

3 3
1 2 -1
2 3 4
3 1 -4

输出样例:

Yes

这道题有一个抽屉原理:我们用cnt数组来储存边,一共有n个点,如果cnt>=n说明至少出现了n+1个点,而总数只有n个点,说明至少有一个点出现了两次,而我们是求最短路径,就说明从当前点再回到当前点路径是减少的,也即出现了负权回路.

Ac代码:

#include<bits/stdc++.h>
using namespace std;
const int N =100010;
int idx,e[N],ne[N],w[N],n,m,h[N],dis[N],cnt[N];
bool st[N];
int add(int a,int b,int c)
{
    e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++;
}
int spfa()
{
    queue<int>q;
    for(int i=1;i<=n;i++)
    {
        st[i]=true;
        q.push(i);
    }
    while(q.size())
    {
        int t =q.front();
        q.pop();
        st[t]=false;
        for(int i =h[t];i!=-1;i=ne[i])
        {
            int j =e[i];
            if(dis[j]>dis[t]+w[i])
            {
                dis[j]=dis[t]+w[i];
                cnt[j]=cnt[t]+1;
                if(cnt[j]>=n)return true;
                if(!st[j])
                {
                    st[j]=true;
                    q.push(j);
                }
                
            }
        }
    }
    return false;
}
int main()
{
    scanf("%d%d",&n,&m);
    memset(h,-1,sizeof h);
    while(m--)
    {
        int a,b,c;
        scanf("%d%d%d",&a,&b,&c);
        add(a,b,c);
    }
    if(spfa())printf("Yes");
    else printf("No");
}

三、floyd算法

前面的都是单源最短路问题,floyd算法针对的是多源最短路,时间复杂度是O(n^3);


 //n表示点数
//初始化:
    for (int i = 1; i <= n; i ++ )
        for (int j = 1; j <= n; j ++ )
            if (i == j) d[i][j] = 0;
            else d[i][j] = INF;

// 算法结束后,d[a][b]表示a到b的最短距离
void floyd()
{
    for (int k = 1; k <= n; k ++ )
        for (int i = 1; i <= n; i ++ )
            for (int j = 1; j <= n; j ++ )
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}

相关例题:

给定一个 n个点 m条边的有向图,图中可能存在重边和自环,边权可能为负数。

再给定 k 个询问,每个询问包含两个整数 x 和 y,表示查询从点 x到点 y 的最短距离,如果路径不存在,则输出 impossible

数据保证图中不存在负权回路。

输入格式

第一行包含三个整数 n,m,k

接下来 m 行,每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。

接下来 k行,每行包含两个整数 x,y,表示询问点 x 到点 y的最短距离。

输出格式

共 k 行,每行输出一个整数,表示询问的结果,若询问两点间不存在路径,则输出 impossible

数据范围

1≤n≤200,
1≤k≤n2
1≤m≤20000
图中涉及边长绝对值均不超过 1000010000。

输入样例:

3 3 2
1 2 1
2 3 2
1 3 1
2 1
1 3

输出样例:

impossible
1

题解:

#include<bits/stdc++.h>
using namespace std;
const int N = 210, INF = 1e9;
int n, m, Q;
int d[N][N];
void floyd()
{
	for (int k = 1; k <= n; k++)
		for (int i = 1; i <= n; i++)
			for (int j = 1; j <= n; j++)
				d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}
int main()
{
	scanf("%d%d%d", &n, &m, &Q);
	for (int i = 1; i <= n; i++)
		for (int j = 1; j <= n; j++)
			if (i == j)d[i][j] = 0;
			else d[i][j] = INF;
	while (m--)
	{
		int a, b, w;
		scanf("%d%d%d", &a, &b, &w);
		d[a][b] = min(d[a][b], w);
	}
	floyd();
	while (Q--)
	{
		int a, b;
		scanf("%d%d", &a, &b);
		if (d[a][b] >INF/2)printf("impossible\n");
		else printf("%d\n", d[a][b]);
	}
}

  • 4
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值