题目描述
观察数字:12321,123321 都有一个共同的特征,无论从左到右读还是从右向左读,都是相同的。这样的数字叫做:回文数字。
本题要求你找到一些5位或6位的十进制数字。满足如下要求:
该数字的各个数位之和等于输入的整数。
输入
一个正整数 n (10< n< 100), 表示要求满足的数位和。
输出
若干行,每行包含一个满足要求的5位或6位整数。
数字按从小到大的顺序排列。
如果没有满足条件的,输出:-1
样例输入
44
样例输出
99899
499994
589985
598895
679976
688886
697796
769967
778877
787787
796697
859958
868868
877778
886688
895598
949949
958859
967769
976679
985589
994499
题目分析
解法一:
暴力破解法
既然题目中说了是五位和六位的数字,那么我们可以直接遍历从10000到999999的所有数字,从中进行筛选
题目代码
#include<iostream>
using namespace std;
int n;
bool flag = false;
bool huiwen(long a)
{
long temp = a;
long b = 0;
while(temp){
b = b*10;
b += temp % 10;
temp /= 10;
}
return a == b;
}
bool xiangjia(long a)
{
long sum = 0;
while(a){
sum += a%10;
a /= 10;
}
if(sum == n){
return true;
}
return false;
}
int main()
{
cin >> n;
for(long i = 10000; i < 1000000; i++){
if(huiwen(i)){
if(xiangjia(i))
{
cout << i << endl;
flag = true;
}
}
}
if(!flag)
cout << "-1" << endl;
return 0;
}
解法二:
暴力破解法虽然简单但是遍历10000到999999之间的所有数浪费了很多时间,所以为了降低运行时间,我们将每一位单独讨论首尾相等我们用一个变量保存,这样下来,我们只需遍历9^3次。
题目代码
#include<iostream>
using namespace std;
bool flag = false;
void solve(int x,int y,int z,int n)
{
int a[3] = {0,0,0};
for(a[0] = 1 ;a[0]<=9;a[0]++)
for(a[1] = 0 ;a[1]<=9;a[1]++)
for(a[2] = 0 ;a[2]<=9;a[2]++)
if(z == 1){
if(x*a[0]+y*a[1]+z*a[2] == n){
cout<<a[0]<<a[1]<<a[2]<<a[1]<<a[0]<<endl;
flag = true;
}
}
else{
if(x*a[0]+y*a[1]+z*a[2] == n){
cout<<a[0]<<a[1]<<a[2]<<a[2]<<a[1]<<a[0]<<endl;
flag = true;
}
}
}
int main()
{
int n = 0;
cin>>n;
solve(2,2,1,n);
solve(2,2,2,n);
if(flag == false) cout<<"-1"<<endl;
return 0;
}
原题链接:C语言网