Pytorch模型转Tensorflow模型的那些事

本文介绍如何将PyTorch模型转换为TensorFlow模型进行部署。通过两个步骤实现:首先是将PyTorch模型文件(.pt)转换为ONNX文件,接着将ONNX文件转换为TensorFlow的.pb文件。文章提供了代码示例,并讨论了版本兼容性和环境配置等问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


最近在研究Query2Title模型,学术界上快速实验一般都用pytorch,但是业界部署模型上大多都还是tensorflow模型部署。也可能是自己太懒了,哈哈,pytorch用久了tensorflow有点生疏,懒的去用啦!结果就…,线上部署必须得tensorflow模型,所以就把torch的.pt文件,转成tensorflow的pb文件把,中间遇到一些问题记录下来,仅供借鉴参考!<ps!立下flag,坚持写一些博客>

pytorch模型转tensorflow流程

总体上pytorch转tensorflow遵循2个步骤:

  1. torch模型文件.pt保存成onnx模型文件.onnx
  2. .onnx模型文件转换成tensorflow .pb文件

torch模型文件转onnx文件

这里直接利用torch的onnx库将.pt文件load后导出为.onnx文件即可,基本上没有什么坑,如下:

import tensorflow as tf
import torch
import onnx
from onnx_tf.backend import prepare
import os
import numpy as np


def torch2Onnx():
    """
    pytorch转onnx
    """
    model_pytorch = YourModel()
    model_pytorch.load_state_dict(torch.load('xxx.pt',
                                       map_location='cpu'))
    # 输入placeholder
    dummy_input = torch.randint(0, 10000, (1, 20))
    dummy_output = model_pytorch(dummy_input)
    print(dummy_output.shape)

    # Export to ONNX format
    torch.onnx.export(model_pytorch, 
                      dummy_input, 
                      'model.onnx', 
                      input_names=['inputs'], 
                      output_name
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值