视频特征提取常用范式总结

简单总结一下视频特征提取的常见范式:

  1. 直接使用3D卷积(时间轴stride>=2,实现时间维度的下采样) + 3D avg pooling,得到视频的全局表征
  2. 使用帧级别的图像特征 + 序列模型:
  •  使用2D卷积神经网络提取帧图像特征
  •  使用3D卷积神经网络提取帧图像特征(使每帧的图像特征考虑到了近邻帧的特征)   
  •  使用ViT模型抽取图像帧特征, patch embedding可以考虑使用2d或者3d嵌入

使用2D卷积提取视频特征的时候,时间轴维度T,先堆叠到batch维度, e.g. NxTxCxHxW - > (NxT)xCxHxW -> 特征提取: (NxT)xD -> reshape回序列特征: NxTxD

序列模型:可以使用lstm以及transformer模型

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值