电流是什么?串、并联中,电流的关系
电流的本质定义:
电流 (I) 是 单位时间内,通过导体截面的电荷量。它的数学定义是:
I
=
Δ
Q
Δ
t
I = \frac{\Delta Q}{\Delta t}
I=ΔtΔQ
这说明电流描述的是电荷流动的速率,即多少电荷(库仑),在某一时间间隔内,通过导体的某个截面。
电流是“电荷流动速率”还是“单位时间内通过导体截面的电子数量”?
两种说法其实都可以成立,但重点和适用场景不同:
- 电荷流动的速率:
- 从物理角度,电流表示的是电荷的流动速率。
- 这是电流的标准定义(单位是库仑/秒)。
- 适合更宏观的描述,比如考虑整个电路中电流的大小、方向等。
- 单位时间内通过导体截面的电子数量:
- 这是在微观上用来解释电流的形成,特别是在金属导体中。
- 这里强调了电流的来源(流动的电子)以及电荷守恒的物理规律。
- 串联电路中电流为什么处处相等?
串联电路只有一条路径,电荷的流动没有分叉
换句话说,流入和流出的电荷数在任意导体上必须保持一致,因为电荷是守恒的,不能“凭空消失”或“突然增多”。
- 如上图
- 流入【细导线】的电荷 = 流出【细导线】的电荷
- 流入【粗导线】的电荷 = 流出【粗导线】的电荷
因此:在串联电路中,不管是粗导线还是细导线,单位时间内,通过导体截面的总电荷量,是相等的,即电流处处相等
横截面不同,但是通过导体截面的总电荷量,是相等的?为什么?
是因为,和电子的速率有关:横截面大的,电子速率小(后面的3 关键点,会讲到)
-
粗导线和细导线有什么不同?
粗导线和细导线的横截面积不同,确实会带来以下两点影响: -
电阻不同:细导线的电阻,比粗导线更大(根据公式 R = ρ ⋅ L A R = \rho \cdot \frac{L}{A} R=ρ⋅AL,横截面积 A A A 越小,电阻越大)
-
电子的漂移速度(微观电流的形成速度)不同
-
关键点:如何理解“电流”和“漂移速度”?
电流和漂移速度之间的关系是关键。我们用公式来拆解它:
电流的定义是: I = n ⋅ A ⋅ v ⋅ e I = n \cdot A \cdot v \cdot e I=n⋅A⋅v⋅e
其中:
- I:电流(单位安培)
- n:单位体积内的自由电子数量(电子密度,导体材料相同则 n 相同)
- A:导体的横截面积
- v:电子的漂移速度(即电子实际移动的平均速度)
- e:单个电子的电荷量(固定值,约
1.6
×
1
0
−
19
C
1.6 \times 10^{-19}C
1.6×10−19C)
我们可以看到: - 如果导线横截面积 A A A 变大(粗导线),漂移速度 v v v 会相应减小,以保证电流 I I I 保持不变。
- 如果横截面积 A A A 变小(细导线),漂移速度 v v v 会增大,同样保持电流 I I I 不变。
- 直观类比:水流模型
可以把电流类比成水流,粗导线和细导线对应水管的粗细:
- 水流量(电流):单位时间内流过水管截面的水量,必须保持一致(串联回路中不会有“多余的水”或“水量不足”)。
- 水流速率(漂移速度):水流在管道中的速度。粗水管(粗导线)里,水流速率会较慢,而细水管(细导线)里,水流速率会较快。
因此,在串联电路中,尽管导体截面积不同,但“水流量”(电流)始终相同,因为“水是守恒的”。
- 总结
- 电流定义:电流是单位时间内通过导体截面的电荷量。
- 串联电路:电流处处相等,因为电荷守恒,单位时间内流过任意截面的总电荷量不变。
- 横截面积不同的影响:横截面积不同会导致漂移速度 v v v 的不同,但电流 I I I 始终相等。
并联电路,电流相加
在串联电路中,取一路,分成两路,根据电荷守恒,那么一定有:i_all = i_1 + i_2(见 👇 图)(根据 KCL 可得)
[图片]
1.2.1 Voltage and current
There are two quantities that we like to keep track of in electronic circuits: voltage and current.
在电子电路中,我们喜欢跟踪两个量:电压和电流
These are usually changing with time; otherwise nothing interesting is happening.
它们通常会,随着时间而改变;否则就不会发生,任何有趣的事情
Voltage
Voltage (symbol V or sometimes E). Officially, the voltage between two points is the cost in energy(work done) required to move a unit of positive charge from the more negative point (lower potential) to the more positive point (higher potential).
Equivalently, it is the energy released when a unit charge moves “downhill” from the higher potential to the lower.
Two points:可以看到,电压,一定要是两点;;;因此,其暗含,电势差 —— potential difference
Vlotage,是一个抽象的概念,所描述的是:
将一个正电荷,从低电位,移动到高电位,所花费的 energy(或者由高电位,下坡(downhill)到,低电位,所释放的能量)
These are the definitions, but hardly the way circuit designers think of voltage. 这些是定义,但绝不是电路设计师对电压的看法
With time, you’ll develop a good intuitive sense of what voltage really is, in an electronic circuit.
随着时间的推移,你会对电子电路中的电压有一个很好的直觉。
Roughly (very roughly) speaking, voltages are what you apply to cause currents to flow.
粗略地说,电压就是你施加的,使电流流动的物质
Voltage is also called potential difference or electromotive force (EMF). 电压也称为电位差或电动势(EMF)。
The unit of measure is the volt, with voltages usually expressed in volts (V)
kilovolts (
1
k
V
=
1
0
3
V
1 kV = 10^3 V
1kV=103V), millivolts (
1
m
V
=
1
0
−
3
V
1 mV = 10^{−3} V
1mV=10−3V), or microvolts (
1
μ
V
=
1
0
−
6
V
1 μV = 10^{−6} V
1μV=10−6V)
A joule (J) of work is done in moving a coulomb © of charge through a potential difference of 1 V. (The coulomb is the unit of electric charge(电荷单位) and it equals the charge of approximately
6
×
1
0
18
6×10^{18}
6×1018 electrons.)
Current
Current (symbol I). Current is the rate of flow of electric charge(电荷流过某一点的,流动的速率) past a point.
The unit of measure is the ampere, or amp, with currents usually expressed in amperes (A),
milliamperes (
1
m
A
=
1
0
−
3
A
1 mA = 10^{−3} A
1mA=10−3A), microamperes (
1
μ
A
=
1
0
−
6
A
1 μA = 10^{−6} A
1μA=10−6A), nanoamperes (
1
n
A
=
1
0
−
9
A
1 nA = 10^{−9} A
1nA=10−9A) or occasionally picoamperes (
1
p
A
=
1
0
−
12
A
1 pA = 10^{−12 A}
1pA=10−12A).
A current of 1 amp equals a flow of 1 coulomb of charge per second.
By convention, current in a circuit is considered to flow from a more positive point to a more negative point, even though the actual electron flow is in the opposite direction. 按照惯例,电路中的电流被认为是从正点流向负点,即使实际电子流的方向相反。
电压和电流的正确表达
Important: from these definitions you can see that currents flow through things, and voltages are applied (or appear) across things.
Important:从这些定义中,你可以看到,电流流过(flow through)物体(things),电压被施加(或出现在)跨接(across)在物体上
- 这里的 “across” 是指电压存在于两个点之间,通常是一个电路元件的两端
- “Applied” 意味着,我们主动地将电压源(如电池或电源)连接到电路元件上,来创建电势差
- “appear” 表示:即使没有外部施加电压,由于电路中的其他原因,比如感应、静电或元件内部的物理过程,也可能自然地在两点之间产生电压差
So you’ve got to say it right: 所以你必须正确地表达它 - always refer to the voltage between two points or across two points in a circuit.
- 在电路中,电压总是指,两个点之间的电势差,或跨接在两个点上的电势差。
- Always refer to current through a device(设备本身) or connection(连接不同器件的,如导线) in a circuit
- 在电路中,电流总是指,流经设备,或连接的电荷量。
Voltage 默认指的是,与【地】进行比较
To say something like “the voltage through a resistor . . . ” is nonsense. 说“通过电阻的电压……”之类的话是无稽之谈。
However, we do frequently speak of the voltage at a point in a circuit. 但是,我们经常谈论电路中某一点的电压。
This is always understood to mean the voltage between that point and 【ground】, a common point in the circuit that everyone seems to know about. 这里通常指的是,某一点与【地】(大家都熟悉的参考点)之间的电压,‘地’是一个大家都熟悉的参考点
Voltage 的产生 —— 对设备中的电荷,做功
We generate voltages by doing work on charges in devices(设备中的电荷) such as batteries (conversion of electrochemical energy), generators (conversion of mechanical energy by magnetic forces), solar cells (photovoltaic conversion of the energy of photons), etc.
我们通过,对【设备中的电荷】,做功,来产生电压,这些设备包括:
- 电池:将电化学能转换为电能;
- 发电机:通过磁力,将机械能,转换为电能;
- 太阳能电池:将光子的能量,通过光电效应转换为电能;
- 等等
We get currents by placing voltages across things. 我们通过在元件或导体两端,施加电压,来产生电流
导线内,电压处处相等
In real circuits we connect things together with wires (metallic conductors)
在实际电路中,我们使用导线(金属导体)将各个元件连接在一起
each of which has the same voltage on it everywhere (with respect to ground, say).
每根导线,在其所有位置上的电压,都相同(相对于地而言)。
👆 这句话强调的是,在理想条件下,一根导线内的所有点,相对于同一个参考点(如地)的电压是相同的
这是因为,理想导线被认为是无电阻的,不会导致电压降
在实际应用中,这种理想化假设通常是一个很好的近似,尤其是在分析简单电路时
In the domain of high frequencies or low impedances, that isn’t strictly true 在高频或低阻抗领域,情况并非完全如此,
and we will have more to say about this later, and in Chapter 1x. 我们将在后面和第 1x 章中对此进行更多讨论
For now, it’s a good approximation. 目前,这是一个很好的近似值
We mention this now so that you will realize that an actual circuit doesn’t have to look like its schematic diagram, because wires can be rearranged.
我们在这里提一下,是为了让你明白,实际电路并不一定与其原理图一模一样,因为导线是可以重新布置的
这意味着,在实际组装时,导线的布局可以有所不同,而不影响电路的功能,只要连接关系保持一致即可
voltage and current 简单的规则
Here are some simple rules about voltage and current:
1、KCL
The sum of the currents into a point in a circuit equals the sum of the currents out (conservation of charge).
在电路中的任意一点,流入该点的电流总和,等于从该点流出的电流总和,这体现了电荷守恒定律。
This is sometimes called Kirchhoff’s current law (KCL). 这有时被称为基尔霍夫电流定律(KCL)。
Engineers like to refer to such a point as a node. 工程师们通常将这样的点称为节点
It follows that, for a series circuit (a bunch of two-terminal things all connected end-to-end), the current is the same everywhere.
- Two-terminal things(两端元件)
- Connected end-to-end(首尾相连)
- A bunch of(多个)
因此,对于串联电路(即多个两端元件,依次首尾相连的电路),电流在所有位置上都是相同的。
2、KVL
[图片]
Things hooked in parallel (Figure 1.1) have the same voltage across them. 并联连接的元件(见图1.1)两端的电压相同
Restated, the sum of the “voltage drops” from A to B 重述一下,从A到B的“电压降”之和
- via one path through a circuit 通过电路中的一个路径
- equals 等于
- the sum by any other route 任何其他路径的总和
and is simply the voltage between A and B. 这仅仅是A和B之间的电压
这句话的意思是:无论你在电路中选择哪条路径从点A走到点B,沿途遇到的所有电压降加起来的总和都是一样的,并且这个总和等于点A和点B之间的电压差。(这里,指在闭合回路中的情况)
例子
A — R1 — R2 — B
| |
±------- R3 --------+
路径1:通过R1和R2 - 从A到B,经过R1和R2的电压降分别为V_R1和V_R2。
- 根据KVL,V_R1 + V_R2 = V_AB
路径2:通过R3 - 从A到B,经过R3的电压降为V_R3。
- 因为R3与R1和R2并联,所以V_R3 = V_AB
总结 - 无论你选择哪条路径从A走到B,电压降的总和都等于V_AB。
- 在并联支路中,每个元件两端的电压相等,都等于V_AB。
Another way to say it is that the sum of the voltage drops around any closed circuit is zero.
另一种表达方式是:在任何闭合回路中,沿回路一周的电压降总和为零。This is Kirchhoff’s voltage law (KVL).
3、功率
The power (energy per unit time) consumed by a circuit device is 电路设备所消耗的功率(单位时间的能量)是
P
=
V
I
(1.1)
P = VI \tag{1.1}
P=VI(1.1)
This is simply (energy/charge) × (charge/time). 这只是 (能量/电荷) × (电荷/时间)。
- 电压 V 可以被视为每单位电荷的能量,即 V = 能量 电荷 V = \frac{\text{能量}}{\text{电荷}} V=电荷能量。
- 电流 I 是每单位时间通过导体横截面的电荷量,即 I = 电荷 时间 I = \frac{\text{电荷}}{\text{时间}} I=时间电荷。
- 因此,当我们将这两个量相乘时,我们得到的是每单位时间的能量,即
P
=
能量
电荷
×
电荷
时间
=
能量
时间
P = \frac{\text{能量}}{\text{电荷}} \times \frac{\text{电荷}}{\text{时间}} = \frac{\text{能量}}{\text{时间}}
P=电荷能量×时间电荷=时间能量,这正是功率的定义
For V in volts and I in amps, P comes out in watts. A watt is a joule per second (1W = 1 J/s).
So, for example, the current flowing through a 60W lightbulb running on 120 V is 0.5 A.
如果一个60瓦的灯泡连接在120伏的电源上,我们可以使用公式 P = V I P = V I P=VI 来计算流过灯泡的电流
Power goes into heat (usually), or sometimes mechanical work (motors), radiated energy (lamps, transmitters), or stored energy (batteries, capacitors, inductors).
功率通常会转化为热能,有时也会转化为机械功(例如电机)、辐射能量(例如灯泡、发射器)或存储能量(例如电池、电容器、电感器)
Managing the heat load in a complicated system (e.g., a large computer, in which many kilowatts of electrical energy are converted to heat, with the energetically insignificant by product of a few pages of computational results) can be a crucial part of the system design.
在复杂的系统中管理热负荷(例如,一台大型计算机,其中数千瓦的电能被转化为热能,而计算结果只是几页纸的 energetically insignificant(能量上不重要的)副产品)可以是系统设计中的一个关键部分。
这句话的意思是,在大型计算机运行过程中,消耗了大量的电能(以千瓦计),这些电能大部分转化为了热能。
而计算机处理数据后产生的计算结果,虽然在信息量上有价值,但从能量转换的角度来看,只是一小部分不显著的副产品。
换句话说,计算机运行时,主要的能量输出形式是热,而不是最终的计算结果
Soon, when we deal with periodically varying voltages and currents, we will have to generalize the simple equation P = V I to deal with average power, but it’s correct as a statement of instantaneous power just as it stands.
当我们将要处理周期性变化的电压和电流时,我们必须对简单的公式 P=VI 进行推广,以处理平均功率的问题
但该公式作为瞬时功率的表述是正确的
Incidentally, don’t call current “amperage”; that’s strictly bush league. 顺便说一下,不要把电流称为“安培数”;这是业余水平的说法。
The same caution will apply to the term “ohmage” when we get to resistance in the next section.
同样的警告也适用于我们接下来讨论电阻时可能出现的术语“欧姆数”。