傅里叶变换相关笔记

本文介绍了信号的奇偶分解,阐述了实值序列的偶序列和奇序列定义,并通过欧拉公式和复数解释了傅里叶变换、傅里叶级数以及复数乘法。同时,讨论了离散傅里叶变换(DFT)的性质,如线性、时移、频移和共轭,并通过实例展示了这些性质。文章还探讨了实序列的奇偶性以及它们在傅里叶变换中的表现。
摘要由CSDN通过智能技术生成
信号的奇偶分解

1、一个实值序列 x e ( n ) x_e(n) xe(n),若
x e ( − n ) = x e ( n ) x_e(-n)=x_e(n) xe(n)=xe(n)
则称为偶序列。

2、一个实值序列 x o ( n ) x_o(n) xo(n),若
x o ( − n ) = − x o ( n ) x_o(-n)=-x_o(n) xo(n)=xo(n)
则称为奇序列。

3、那么任意实值序列都可以分解成他的偶部分量和奇部分量
x ( n ) = x e ( n ) + x o ( n ) x(n)=x_e(n) + x_o(n) x(n)=xe(n)+xo(n)
偶部:
x e ( n ) = 1 2 [ x ( n ) ( 原序列 ) + x ( − n ) (反褶序列) ] x_e(n)=\frac{1}{2}[x(n)(原序列)+x(-n)(反褶序列)] xe(n)=21[x(n)(原序列)+x(n)(反褶序列)] 奇部:
x e ( n ) = 1 2 [ x ( n ) ( 原序列 ) − x ( − n ) (反褶序列) ] x_e(n)=\frac{1}{2}[x(n)(原序列)-x(-n)(反褶序列)] xe(n)=21[x(n)(原序列)x(n)(反褶序列)]

相位

1、角度转换成时间

A n g l e 36 0 。 P e r i o d = T i m e s \frac{Angle}{360^。} Period = Times 360AnglePeriod=Times
A n g l e 36 0 。 ÷ F r e q u e n c y = T i m e s \frac{Angle}{360^。} ÷ Frequency = Times 360Angle÷Frequency=Times
F r e q u e n c y = 1 P e r i o d Frequency = \frac{1}{Period} Frequency=Period1

2、一个重要性质

1)不同的向量角度可以通过Cos和Sin的组合来描述不同的方位,
2)也可以通过不同的波(正弦波和余弦波)的相加来描述任何相位移动(频率相同)。
只需要以某种方式改变他们的振幅。
幅度不同的正弦信号和余弦信号可以合成不同相位移动的信号
P h a s e ( 相位 ) = t a n − 1 ( P A P B ) Phase(相位) = tan^{-1}(\frac{PA}{PB}) Phase(相位)=tan1(PBPA)
P a ( 振幅 ) = ( P A 2 + P B 2 ) Pa(振幅)=\sqrt{(PA^2+PB^2)} Pa(振幅)=(PA2+PB2)
PA:正弦信号的幅度;
PB:余弦信号的幅度;

例如:
一个幅度为29的正弦信号,一个幅度为32的余弦信号,两个信号合成后
4 2 ° = t a n − 1 ( 29 32 ) 42^{°} = tan^{-1}(\frac{29}{32}) 42°=tan1(3229),得到一个正弦信号相移42度后的信号。

欧拉公式

e = 1 + 1 1 ! + 1 2 ! + 1 3 ! + 1 4 ! . . . e=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!} ... e=1+1!1+2!1+3!1+4!1...
e x = 1 + x 1 ! + x 2 2 ! + x 3 3 ! + x 4 4 ! . . . e^x=1+\frac{x}{1!}+\frac{x^2}{2!}+\frac{x^3}{3!}+\frac{x^4}{4!} ... ex=1+1!x+2!x2+3!x3+4!x4...
S i n ( x ) = x 1 ! − x 3 3 ! + x 5 5 ! − x 7 7 ! . . . Sin(x)=\frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}... Sin(x)=1!x3!x3+5!x57!x7...
C o s ( x ) = 1 − x 2 2 ! + x 4 4 ! − x 6 6 ! + x 8 8 ! . . . Cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} +\frac{x^8}{8!}... Cos(x)=12!x2+4!x46!x6+8!x8...
C o s ( x ) + S i n ( x ) = 1 + x 1 ! − x 2 2 ! − x 3 3 ! + x 4 4 ! + x 5 5 ! − x 6 6 ! − x 7 7 ! + . . . Cos(x) + Sin(x) = 1 +\frac{x}{1!} - \frac{x^2}{2!} - \frac{x^3}{3!}+\frac{x^4}{4!}+\frac{x^5}{5!}-\frac{x^6}{6!}-\frac{x^7}{7!}+... Cos(x)+Sin(x)=1+1!x2!x23!x3+4!x4+5!x56!x67!x7+...
i 2 = − 1 i^2 = -1 i2=1
e i x = 1 + i x 1 ! + ( i x ) 2 2 ! + ( i x ) 3 3 ! + ( i x ) 4 4 ! + ( i x ) 5 5 ! . . . e^{ix}=1+\frac{ix}{1!}+\frac{(ix)^2}{2!}+\frac{(ix)^3}{3!}+\frac{(ix)^4}{4!}+\frac{(ix)^5}{5!} ... eix=1+1!ix+2!(ix)2+3!(ix)3+4!(ix)4+5!(ix)5...

e i x = 1 + i x 1 ! − x 2 2 ! − i x 3 3 ! + x 4 4 ! + i x 5 5 ! . . . e^{ix}=1+\frac{ix}{1!}-\frac{x^2}{2!}-\frac{ix^3}{3!}+\frac{x^4}{4!}+\frac{ix^5}{5!} ... eix=1+1!ix2!x23!ix3+4!x4+5!ix5...
e i x = [ 1 − x 2 2 ! + x 4 4 ! − x 6 6 ! + x 8 8 ! . . . ] + i [ x 1 ! − x 3 3 ! + x 5 5 ! − x 7 7 ! . . . ] e^{ix} =[1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} +\frac{x^8}{8!}...] + i[\frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}...] eix=[12!x2+4!x46!x6+8!x8...]+i[1!x3!x3+5!x57!x7...]
e i x = C o s ( x ) + i ∗ S i n ( x ) e^{ix} = Cos(x)+i*Sin(x) eix=Cos(x)+iSin(x)
==>欧拉公式:
e i π + 1 = 0 e^{i\pi} + 1 = 0 e+1=0
e i θ = C o s ( θ ) + i ∗ S i n ( θ ) e^{i\theta} = Cos(\theta) + i*Sin(\theta) eiθ=Cos(θ)+iSin(θ)
==>极坐标表示
S i n ( θ ) = A ∗ C o s ( θ ) + B ∗ S i n ( θ ) Sin(\theta) = A*Cos(\theta) + B*Sin(\theta) Sin(θ)=ACos(θ)+BSin(θ)

例如:
笛卡尔表示法
3 + 4 ! 3+4! 3+4!
极坐标表示法
5 ∗ C o s ( 53. 1 ° ) + 5 ∗ S i n ( 53. 1 ° ) 5*Cos(53.1^°) + 5*Sin(53.1^°) 5Cos(53.1°)+5Sin(53.1°)
欧拉公式表示法
5 e i 53. 1 ° 5e^{i53.1^°} 5ei53.1°

复数乘法用指数形式表示

实例:
( 3 + 4 i ) ∗ ( 9 + 2 i ) (3+4i) * (9 + 2i) (3+4i)(9+2i)
Step 1 :
( 3 2 + 4 2 ) = 5 \sqrt(3^2 + 4^2) = 5 ( 32+42)=5 ( 9 2 + 2 2 ) ≈ 9.2 \sqrt(9^2 + 2^2) \approx 9.2 ( 92+22)9.2
Step 2:
t a n − 1 ( 4 / 3 ) ≈ 53.1 ° tan^{-1}(4/3) \approx 53.1° tan1(4/3)53.1° t a n − 1 ( 9 / 2 ) ≈ 12.5 ° tan^{-1}(9/2) \approx 12.5° tan1(9/2)12.5°
Step 3:
= 5 e 53.1 ° i ∗ 9.2 e 12.5 ° i = 46 e 65.6 ° i =5e^{53.1°i} * 9.2e^{12.5°i} = 46e^{65.6°i} =5e53.1°i9.2e12.5°i=46e65.6°i
= 46 c o s ( 65.6 ° ) + 46 i s i n ( 65.6 ° ) =46 cos(65.6°)+46 i sin(65.6°) =46cos(65.6°)+46isin(65.6°)

复数的相除

利用复数乘以复共轭消去虚部的原理。

实例:
方法1:用复数形式进行计算
( 3 + 4 i ) ( 9 + 2 i ) \frac{(3 + 4i)}{(9 + 2i)} (9+2i)(3+4i)
上下乘以分母的复共轭
( 3 + 4 i ) ( 9 + 2 i ) ( 9 − 2 i ) ( 9 − 2 i ) = ( 3 + 4 i ) ( 9 − 2 i ) 85 = ( 35 + 30 i ) 85 = 0.41 + 0.35 i \frac{(3 + 4i)}{(9 + 2i)} \frac{(9-2i)}{(9-2i)}=\frac{(3 + 4i)(9-2i)}{85} = \frac{(35 +30i)}{85}={0.41+0.35i} (9+2i)(3+4i)(92i)(92i)=85(3+4i)(92i)=85(35+30i)=0.41+0.35i
方法2:用指数形式进行计算
= ( 3 + 4 i ) ( 9 + 2 i ) = 5 e 53.1 ° i 9.2 e 12.5 ° i = 0.54 e 40.6 i =\frac{(3 + 4i)}{(9 + 2i)}=\frac{5e^{53.1°i}}{9.2e^{12.5°i}}=0.54e^{40.6i} =(9+2i)(3+4i)=9.2e12.5°i5e53.1°i=0.54e40.6i = 0.54 c o s ( 40.6 ° ) + 0.54 i s i n ( 40.6 ° ) = 0.41 + 0.35 i =0.54cos(40.6°)+0.54i sin(40.6°)={0.41+0.35i} =0.54cos(40.6°)+0.54isin(40.6°)=0.41+0.35i

卷积

傅里叶级数
C n = ∫ + P 2 − P 2 x ( t ) e − i 2 π f n t d t C_n=\int_{+\frac{P}{2}}^{-\frac{P}{2}}{x(t)e^{-i2\pi f_nt}}dt Cn=+2P2Px(t)ei2πfntdt

傅里叶变换:
X ( f ) = ∫ + ∞ − ∞ x ( t ) e − i 2 π f t d t X(f) = \int_{+\infty}^{-\infty}{x(t)e^{-i2\pi ft}}dt X(f)=+x(t)ei2πftdt
用复数的形式表示为:
X ( f ) = ∫ + ∞ − ∞ x ( t ) [ c o s ( 2 π f t ) − i s i n ( 2 π f t ) ] d t X(f) = \int_{+\infty}^{-\infty}x(t)[{cos(2\pi ft)-isin(2\pi ft)}]dt X(f)=+x(t)[cos(2πft)isin(2πft)]dt

两者不同之处:
1、时域限制范围不同: 傅里叶级数限制在 正负半周期内,
傅里叶变换的时间限制在 正负无穷区间内。
2、傅里叶级数的频率有下标,而傅里叶变换没有(这样的积分结果大不相同)

傅里叶级数只关注信号的一个周期以内

离散傅里叶变换(DTFT)

例1:求 x ( n ) = ( 0.5 ) n u ( n ) x(n)=(0.5)^nu(n) x(n)=(0.5)nu(n)的离散时间傅里叶变换

X ( e j w ) = ∑ n = 0 + ∞ ( 0.5 ) n e − j w n X(e^{jw})=\sum_{n = 0}^{+\infty}{(0.5)^ne^{-jwn}} X(ejw)=n=0+(0.5)nejwn
例2:求有限序列的离散傅里叶变换 x ( n ) = { 1 , 2 ˉ , 3 , 4 , 5 } x(n)=\{ 1,\bar{2},3,4,5\} x(n)={1,2ˉ,3,4,5}

X ( e j w ) = ∑ n = − ∞ + ∞ x ( n ) e − j w n X(e^{jw})=\sum_{n = -\infty}^{+\infty}{x(n)e^{-jwn}} X(ejw)=n=+x(n)ejwn
X ( e j w ) = e j w + 2 + 3 e − j w + 4 e − 2 j w + 5 ∗ e − 5 j w X(e^{jw})=e^{jw} + 2 + 3e^{-jw} + 4e^{-2jw} + 5*e^{-5jw} X(ejw)=ejw+2+3ejw+4e2jw+5e5jw

两个重要性质
1、周期性

X ( e j w ) = X ( e j ( w + 2 π ) ) X(e^{jw}) = X(e^{j(w + 2\pi)}) X(ejw)=X(ej(w+2π))

具体含义为:为了分析目的仅需要分析 w ∈ [ 0 , 2 π ] w \in{[0,2\pi]} w[0,2π],或者 w ∈ [ − π , π ] w \in{[-\pi,\pi]} w[π,π]

2、对称性

为了绘制出 X ( e j w ) X(e^{jw}) X(ejw) ,一般情况下仅需要考虑 w ∈ [ 0 , π ] w\in{[0,\pi]} w[0,π],即一半的周期

例3:对例1中 X ( e j w ) X(e^{jw}) X(ejw),在 w ∈ [ 0 , π ] w\in{[0,\pi]} w[0,π]之间的501个点求值,并绘制出对应的幅度,相位,实部,虚部等信息。

R = 0. 5 n C o s ( n ∗ w ) R = 0.5^nCos(n*w) R=0.5nCos(nw)
I = 0. 5 n S i n ( n ∗ w ) I = 0.5^nSin(n*w) I=0.5nSin(nw)

2、用矩阵的方式表示

X = x ( n ) ∗ e x p ( − j π M k ∗ n T ) X=x(n)*exp(-j\frac{\pi}{M}k*n^{T}) X=x(n)exp(jMπknT)
n为轴的序列,M为分为多少个区间,k为从0开始到M的值,x(n)为原始数据序列

ENDVAL = 2*pi;

MAX_N = 500;
n = [0:1:MAX_N];
w=n.*ENDVAL/MAX_N;

%1、使用公式化简后的傅里叶变换
%  X = exp(1i*w)./(exp(1i*w) - 0.5*ones(1,MAX_N + 1));
%  realData = real(X);
%  imagData = imag(X);

%2、使用极坐标的方式进行傅里叶变换
% realData = zeros(1,MAX_N + 1);
% imagData = zeros(1,MAX_N + 1);
% for wi=1:MAX_N + 1
%     realData(wi)     = sum( (0.5.^(n).*cos(n*w(wi))));
%     imagData(wi)     = -sum( (0.5.^(n).*sin(n*w(wi))) );
% end

%3、用矩阵的方式进行表示
x=0.5.^n;
X = x*exp(-1i*pi/MAX_N.*n'*n);
realData = real(X);
imagData = imag(X);

PA = sqrt(realData.^2 + imagData.^2);
Pha = atan2(imagData,realData);
% %
% % %绘制幅度
subplot(2,2,1);
plot(w, PA); title("幅度");
% %
% % %绘制相位
subplot(2,2,2);
plot(w, Pha); title("相位");
% %
% % %绘制实部
subplot(2,2,3);
plot(w, realData); title("实部");
% %
% % %绘制虚部
subplot(2,2,4);
plot(w, imagData); title("虚部");

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-MQ0tS7Ba-1686761213545)(SRC/fly1.jpg)]

使用积分公式化简和极坐标方式进行傅里叶变换得到的结果一致。
绘制了0~2pi之间的傅里叶变换,可以看出实部信号为对称信号(偶对称),虚部为数值取反对称(奇对称)。

例4:对例2 在 x ∈ [ 0 , π ] x\in{[0,\pi]} x[0,π]之间的501个点进行傅里叶变换

clear all;
close all;
ENDVAL = pi;%2.0*pi;

MAX_N = 500; %频率大采样区间个数=采样个数-1
k = [0:1:MAX_N];
x_n=[1:5];   %信号序列
n=[-1:3];    %序列轴

%通过矩阵进行傅里叶变换
X = x_n*exp(-1i*ENDVAL/MAX_N.*n'*k);
realData = real(X);
imagData = imag(X);

PA = sqrt(realData.^2 + imagData.^2);
Pha = atan2(imagData,realData);
% %
% % %绘制幅度
subplot(2,2,1);
plot(k/500, PA); title("幅度");
% %
% % %绘制相位
subplot(2,2,2);
plot(k/500, Pha); title("相位");
% %
% % %绘制实部
subplot(2,2,3);
plot(k/500, realData); title("实部");
% %
% % %绘制虚部
subplot(2,2,4);

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-klTjrFM5-1686761213547)(SRC/fly2.jpg)]

傅里叶变换的性质
1、线性

信号叠加做离散傅里叶变换,与分别做傅里叶变换后叠加一样。
F [ a x 1 ( n ) + b x 2 ( n ) ] = a F [ x 1 ( n ) ] + b F [ x 2 ( n ) ] F[ax1(n)+bx2(n)]=aF[x1(n)] +bF[x2(n)] F[ax1(n)+bx2(n)]=aF[x1(n)]+bF[x2(n)]
例题
x 1 ( n ) x_1(n) x1(n) x 2 ( n ) x_2(n) x2(n)是两个 n ∈ [ 0 , 1 ] n\in{[0,1]} n[0,1]以内的, [ 0 , 1 ] [0,1] [0,1]之间的随机序列,利用DFT变换过程。

clc;
clear all;
close all;
% 用于测试DTFT的线性性质
x1 = rand(1,11);
x2 = rand(1,11);
n=0:10;
alpha=2;
beta=3;
k=0:500;
w=pi/(500)*k;
X1=x1*exp(-j.*(n'*w));
X2=x2*exp(-j.*(n'*w));


x=alpha*x1+ beta*x2;
X=x*exp(-j.*(n'*w));

%先绘制分别DFT 乘以系数
ADD1=abs(alpha*X1 + beta*X2);
plot(w/pi, ADD1);
hold on;

%相位1
angle1=angle(alpha*X1 + beta*X2);
plot(w/pi, angle1);
hold on;

%再绘制先进行乘系数相加后的进行DFT的功率谱
ADD2=abs(X);
plot(w/pi, ADD2);
hold on;

%相位2
angle2=angle(X);
plot(w/pi, angle2);
hold on;

%再绘制两者差值
plot(w/pi, ADD2 - ADD1);

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-fROn45ar-1686761213548)(IMAGE/LINETEST.png)]
可以从仿真代码中看出两个幅度谱和相位谱完全重叠,差值为0,

2、时移

在时域的移位相当于相位移动。

例题
x ( n ) x(n) x(n)是个 n ∈ [ 0 , 1 ] n\in{[0,1]} n[0,1]以内的, [ 0 , 1 ] [0,1] [0,1]之间的随机序列,利用DFT变换过程。令 y ( n ) = x ( n − 2 ) y(n)=x(n-2) y(n)=x(n2)验证以上性质。

x=rand(1,11);
n=0:10;
k=0:500;
w=pi/(500)*k;
X1=x*exp(-j.*(n'*w));

m=n+2;
X2=x*exp(-j.*(m'*w));

%幅度1
ADD1=abs(X1);
plot(w/pi, ADD1);
hold on;

%相位1
angle1=angle(X1);
plot(w/pi, angle1);
hold on;

%幅度2
ADD2=abs(X2);
plot(w/pi, ADD2);
hold on;

%相位2
angle2=angle(X2);
plot(w/pi, angle2);
hold on;

%再绘制两者差值
plot(w/pi, ADD2 - ADD1);

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ioV3uIgf-1686761213548)(IMAGE/ShiftTest.png)]
可以从谱图中看出,相位有移动,而幅度谱一样

3、频移

时域乘以复指数,相应于频域移位。
F [ x ( n ) e j w 0 n ] = X ( e j ( w − w 0 ) ) F[x(n)e^{jw_0n}]=X(e^{j(w-w0)}) F[x(n)ejw0n]=X(ej(ww0))

例题
x ( n ) = c o s ( π n / 2 ) , n ∈ [ 0 , 100 ] x(n)=cos(\pi n/2),n\in{[0,100]} x(n)=cos(πn/2),n[0,100] y ( n ) = e j π n / 4 x ( n ) y(n)=e^{j\pi n/4}x(n) y(n)=ejπn/4x(n),验证以上性质。

% 频移测试
n=0:100;
x=cos(pi*n/2);
k=-100:100;
w=pi/(100)*k;
X=x*exp(-j.*(n'*w));

y=exp(j*pi*n/4).*x;
Y=y*exp(-j.*(n'*w));

%幅度1
subplot(2,1,1);
ADD1=abs(X);
plot(w/pi, ADD1);
hold on;

%幅度2
ADD2=abs(Y);
plot(w/pi, ADD2);

subplot(2,1,2);
%相位1
angle1=angle(X);
plot(w/pi, angle1);
hold on;

%相位2
angle2=angle(Y);
plot(w/pi, angle2);
hold on;

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-IhjjNuEk-1686761213549)(IMAGE/RFShift.png)]

共轭

在时域的共轭,相当于在频域的反转和共轭

例题
x ( n ) x(n) x(n)是个 n ∈ [ − 5 , 10 ] n\in{[-5,10]} n[5,10]以内的,一个复值随机序列,其实部和虚部都在 [ 0 , 1 ] [0,1] [0,1]之间均匀分布。

%傅里叶变换的共轭测试
n=-5:10;
x=rand(1,length(n))+j*rand(1,length(n));
k=-100:100;w=(pi/100)*k;
X = x*exp(-j.*(n'*w));%原始序列进行DFT

%共轭后进行DFT
y=conj(x);
Y1=y*exp(-j.*(n'*w));
Y2=conj(fliplr(Y1));

Y=Y2;
%Y=Y1;

%幅度1
subplot(2,1,1);
ADD1=abs(X);
plot(w/pi, ADD1);
hold on;

%幅度2
ADD2=abs(Y);
plot(w/pi, ADD2);


subplot(2,1,2);
%相位1
angle1=angle(X);
plot(w/pi, angle1);
hold on;

%相位2
angle2=angle(Y);
plot(w/pi, angle2);
hold on;

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-c7esREOq-1686761213549)(IMAGE/conjTest.png)]从图中可以看出幅度谱和相位谱通过求反褶后再进行共轭谱图保持一致。

反转

在时域中的反转,相当于在频域中的反转。

例题
x ( n ) x(n) x(n)是个 n ∈ [ − 5 , 10 ] n\in{[-5,10]} n[5,10]以内的,一个复值随机序列,其实部和虚部都在 [ 0 , 1 ] [0,1] [0,1]之间均匀分布,以验证以上性质。

%时域反转在频域的响应测试
n=-5:10;
x=rand(1,length(n))+j*rand(1,length(n));
k=-100:100;w=(pi/100)*k;
X = x*exp(-j.*(n'*w));%原始序列进行DFT

%时序反转后进行DFT
y=fliplr(x);
m=-fliplr(n);
Y1=y*exp(-j.*(m'*w));
Y2=(fliplr(Y1));

%Y=Y2;
Y=Y1;

%幅度1
subplot(2,1,1);
ADD1=abs(X);
plot(w/pi, ADD1);
hold on;

%幅度2
ADD2=abs(Y);
plot(w/pi, ADD2);
hold on;

%相位1
angle1=angle(X);
plot(w/pi, angle1);
hold on;

%相位2
angle2=angle(Y);
plot(w/pi, angle2);
hold on;

Y=Y2;
subplot(2,1,2);
%幅度1
ADD1=abs(X);
plot(w/pi, ADD1);
hold on;

%幅度2
ADD2=abs(Y);
plot(w/pi, ADD2);
hold on;

%相位1
angle1=angle(X);
plot(w/pi, angle1);
hold on;

%相位2
angle2=angle(Y);
plot(w/pi, angle2);
hold on;

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-XF118LAZ-1686761213550)(IMAGE/fanzhuanTest.png)]
从图中看出,在时序上进行反转后求DFT,在频域进行反转即可得到与原始序列进行DFT后一样的频域序列。

卷积

时域的卷积,相当于频域的相乘.(很重要的性质)
F [ x 1 ( n ) ∗ x 2 ( n ) ] = F [ x 1 ( n ) ] F [ x 2 ( n ) ] F[x1(n)*x2(n)]=F[x1(n)]F[x2(n)] F[x1(n)x2(n)]=F[x1(n)]F[x2(n)]

相乘

时域的相乘,相当于频域的周期卷积.(很重要的性质)

实序列对称

实序列可以分解为偶部和奇部 x ( n ) = x e ( n ) + x o ( n ) x(n)=x_e(n)+x_o(n) x(n)=xe(n)+xo(n),那么 F [ x e ( n ) ] = R e [ X ( e j w ) ] F[x_e(n)]=Re[X(e^{jw})] F[xe(n)]=Re[X(ejw)]
F [ x o ( n ) ] = j I m [ X ( e j w ) ] F[x_o(n)]=jIm[X(e^{jw})] F[xo(n)]=jIm[X(ejw)]

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值