猫的十二分类

这篇博客介绍了猫的十二分类任务,包括数据集、训练与测试集的划分,以及预测结果提交的要求。作者分享了实验过程中的挑战,如图片尺寸不一致,通道差异等问题,并尝试了多种预处理方法和卷积神经网络模型,如CNN、ResNet101,最终版本6的模型达到60%的准确率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

介绍:猫的十二分类

  • (1)任务描述
    利用训练的模型来预测数据所属的类别。
  • (2)数据说明 本数据集包含 12 种类的猫的图片。
    整个数据将被分为训练集与测试集。在训练数据中,我们提供彩色的图片.
    • 训练集:在训练集中,我们将提供高清彩色图片以及图片所属的分类。
    • 测试集:在测试数据集中,我们仅仅提供彩色图片。
  • (3)提交答案 考试提交,需要提交模型代码项目版本和结果文件。结果文件为 CSV 文件格式,命 名为 result.csv,文件内的字段需要按照指定格式写入。
    文件格式:cat_12_test/WMgOhwZzacY023lCusqnBxIdibpkT5GP.jpg 0
    其中,前半部分为【图片路径】,后半部分为【类别编号】。
    提交的预测结果要与我们提供的 label 图像名字与格式 保持完全一致,否则上传 无法通过格式检查。

说明

提交文件样例为:krEVI3eSjO9FMKybdhLQovCYnG2DwlaR.jpg,0

答辩

  • 每个小组采用 PPT 讲解 + 程序演示的形式进行答辩
  • 每个小组答辩时间不超过 10 分钟
  • 学生讲解和演示总时长不超过 6 分钟;
  • 评审在线提问问答不超过 4 分钟

提交材料

  • 一份三级项目报告、一份答辩 PPT、一份完整的项目
  • 每个文件的命名格式:班级-小组-选题,如:17-5-第 1 组-人流密度估计。

遇到的问题说明

  • 每张图片的大小不一致图片的通道不一样࿰
### 十二分数据集下载及相关说明 十二分问题是一个典型的图像分任务,目标是对12种不同种进行分。该数据集通常被用于计算机视觉领域的入门练习和研究[^2]。 #### 数据集组成 `cat_12` 数据集包含三个主要部分: - **训练集 (`cat_12_train`):** 包含2160张带有标注的高清彩色图片。 - **测试集 (`cat_12_test`):** 包含240张未标注的彩色图片。 - **标签文件 (`train_list.txt`):** 记录了每张图片对应的别标签[^3]。 #### 下载方法 以下是获取 `cat_12` 数据集的具体步骤: 1. **通过官方渠道下载** 如果有指定的官方链接或平台(如 PaddlePaddle 的 AI Studio),可以直接访问并下载数据集。例如,在某些教程中提到可以通过以下命令完成数据集的下载与解压操作[^4]: ```bash !wget https://example.com/path/to/cat_12_train.zip # 替换为实际URL !wget https://example.com/path/to/cat_12_test.zip # 替换为实际URL !unzip cat_12_train.zip -d ./data/ !unzip cat_12_test.zip -d ./data/ ``` 2. **手动下载** 若无法通过脚本自动下载,则可以前往相关资源网站(如 Kaggle 或百度网盘)查找具体的数据集链接,并将其手动下载到本地环境后再上传至实验环境中使用。 3. **注意事项** - 确保网络连接正常,尤其是在执行 `!wget` 命令时可能需要稳定的互联网接入。 - 部分情况下,如果涉及登录验证或其他权限控制机制,请按照提示输入用户名密码或者生成 API Token 进行授权访问。 #### 示例代码片段 为了便于理解如何加载此数据集,下面给出一段简单的 Python 脚本示例来展示基本流程: ```python import paddle.vision.transforms as T from paddle.io import Dataset transform = T.Compose([ T.Resize((224, 224)), T.ToTensor(), ]) class CatDataset(Dataset): def __init__(self, root_dir, transform=None): self.root_dir = root_dir self.transform = transform with open(f"{root_dir}/train_list.txt", 'r') as f: lines = f.readlines() self.images = [] self.labels = [] for line in lines: img_path, label = line.strip().split(' ') self.images.append(img_path) self.labels.append(int(label)) def __len__(self): return len(self.images) def __getitem__(self, idx): image_path = os.path.join(self.root_dir, self.images[idx]) image = Image.open(image_path).convert('RGB') label = self.labels[idx] if self.transform is not None: image = self.transform(image) return image, label dataset = CatDataset(root_dir='./data/', transform=transform) print(f"Total samples: {len(dataset)}") ``` 上述代码定义了一个自定义数据集 `CatDataset` 并实现了读取功能,方便后续调用框架内置工具完成进一步处理工作。 --- ###
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值