三维插值(MATLAB)——TriScatteredInterp/scatteredInterpolant函数

这两个函数功能是相同的,不过TriScatteredInterp是老版函数,MATLAB文档上不推荐使用。

函数功能

插入二维或三维散点数据

使用 scatteredInterpolant 对散点数据的二维或三维数据集执行插值。scatteredInterpolant 返回给定数据集的插值函数 F。可以计算一组查询点(例如二维 (xq,yq))处的 F 值,以得出插入的值 vq = F(xq,yq)

创建对象

语法

F = scatteredInterpolant(x,y,v)

F = scatteredInterpolant(x,y,z,v)

F = scatteredInterpolant(P,v)

F = scatteredInterpolant(___,Method)

说明

F = scatteredInterpolant(x,y,v) 创建一个拟合 v = F(x,y) 形式的曲面的插值。向量 x 和 y 指定样本点的 (x,y) 坐标。v 是一个包含与点 (x,y) 关联的样本值的向量。理解成一个三维曲面

F = scatteredInterpolant(x,y,z,v) 创建一个 拟合v = F(x,y,z) 形式的三维插值。可以理解为三维空间某一点(x,y,z)处的强度值为 v。

F = scatteredInterpolant(P,v) 以数组形式指定样本点坐标。P 的行包含 v 中值的 (x, y) 或 (x, y, z) 坐标。

F = scatteredInterpolant(___,Method) 指定插值方法:'nearest''linear' 或 'natural'。在前三个语法中的任意一个中指定 Method 作为最后一个输入参数。

 

计算位于查询位置 (xq,yq) 处的插值。

[xq,yq] = meshgrid(linspace(1,1000,500),linspace(1,400,20));
(注:y = linspace(x1,x2,n) 生成 n个点。这些点的间距为 (x2-x1)/(n-1)。)
xq:是一个500*20的矩阵,每行元素都相同;
yq:是一个500*20的矩阵,每列元素都相同;
vq = F(xq,yq);根据拟合出的函数方程F,给定自变量xq,yq,求出对应的高度值vq。

例子:

创建包含 50 个散点的样本数据集。这里有意使用较少的点数量,目的是为了突出插值方法之间的差异。

x = -3 + 6*rand(50,1);
y = -3 + 6*rand(50,1);
v = sin(x).^4 .* cos(y);
创建插值和查询点网格。
F = scatteredInterpolant(x,y,v);
[xq,yq] = meshgrid(-3:0.1:3);

使用 'nearest''linear' 和 'natural' 方法绘制结果图。每当插值方法更改时,您都需要重新查询插值以获取更新后的结果。

F.Method = 'nearest';
vq1 = F(xq,yq);
plot3(x,y,v,'mo')
hold on
mesh(xq,yq,vq1)
title('Nearest Neighbor')
legend('Sample Points','Interpolated Surface','Location','NorthWest')

结果:

                                        fromMATLAB文档:https://ww2.mathworks.cn/help/matlab/ref/scatteredinterpolant.html

### 回答1: matlab scatteredinterpolant是一种用于非结构化数据的插值函数,可以通过散点数据生成一个插值函数,用于在数据点之间进行插值。它可以用于各种应用,如图像处理、信号处理、数值分析等。使用该函数可以方便地进行数据插值和数据分析。 ### 回答2: matlab中的ScatteredInterpolant是一种用于处理离散点数据的插值工具。它通过根据已知的离散点建立一个插值函数,从而可以得到在离散点之间的任意位置的插值结果。 ScatteredInterpolant可以处理多维的离散点数据,并且支持不同的插值方法,包括线性插值、最近邻插值和样条插值等。 使用ScatteredInterpolant,我们可以将散点数据进行插值处理,得到在任意位置处的估计值。这对于在缺少数据的区域进行预测和填补非常有用。 ScatteredInterpolant类使用的方法有两种:griddata和triangulation。griddata方法将点数据转化为正则网格数据并进行插值,而triangulation方法基于三角剖分将数据进行插值。 当我们想要进行插值时,首先需要创建一个ScatteredInterpolant对象并传入离散点数据。然后,我们可以使用这个对象对任意位置进行插值。可以指定插值方法和插值点的求解方法。 使用ScatteredInterpolant的一个典型的应用场景是在地理信息系统中,通过采集的有限数量的坐标点数据,来推测其他位置的未知数据。另一个典型应用是在计算机图形学中,将有限的数据点插值成平滑的曲面或者曲线。 总之,ScatteredInterpolant是一个非常方便的工具,能够有效地处理离散点数据的插值问题,使得我们能够更好地估计和填补缺失数据。 ### 回答3: ScatteredInterpolant是MATLAB中的一个函数,用于对非结构化数据进行插值。这个函数可以用于三维或更高维的数据。通常,它被用来对离散的数据点进行插值,以便获得一个连续的函数,可以对任意位置进行插值计算。 首先,我们需要通过提供的数据点来创建一个ScatteredInterpolant对象。可以使用这些数据点来定义插值函数的属性,如插值方法和外推行为。可以选择的插值方法有三次样条插值、最近邻插值和线性插值。 一旦ScatteredInterpolant对象创建成功,我们可以使用它来进行插值计算。可以通过向函数传递待插值的位置来获得插值结果。这样,我们就可以得到在任意位置的插值值。 此外,我们还可以使用ScatteredInterpolant对象计算梯度和Hessian矩阵。这些计算可以用于优化问题和导数计算。 总而言之,ScatteredInterpolant是MATLAB中非常有用的一个函数,可以对非结构化数据进行插值计算。通过创建ScatteredInterpolant对象并传递待插值的位置,我们可以获得任意位置的插值值,并且还可以进行梯度和Hessian矩阵的计算。这为我们解决很多实际问题提供了方便和灵活的工具。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值