sklearn随机森林算法对乳腺癌的预测

这篇博客通过导入相关库和数据集,探讨了如何使用sklearn的随机森林算法预测乳腺癌。首先进行了初步建模,然后着重调整了n_estimators参数,观察其对模型准确率的影响。接着,为避免耗时的多参数调整,采用网格搜索逐个调整参数,如max_depth,以理解参数对模型性能的具体作用,并应用复杂度-泛化误差方法进行调参。
摘要由CSDN通过智能技术生成

 1. 导入需要的库

from sklearn.datasets import load_breast_cancer
from sklearn.ensemble import RandomForestClassifier 
from sklearn.model_selection import GridSearchCV 
from sklearn.model_selection import cross_val_score 
import matplotlib.pyplot as plt 
import pandas as pd 
import numpy as np

2. 导入数据集,探索数据

 data = load_breast_cancer()
 data 
 data.data.shape 
 data.target 
#可以看到,乳腺癌数据集有569条记录,30个特征,单看维度虽然不算太高,但是样本量非常少。过拟合的情况可能存在

3. 进行一次简单的建模,看看模型本身在数据集上的效果

rfc = RandomForestClassifier(n_estimators=100,random_state=90)
score_pre = cross_val_score(rfc,data.data,data.target,cv=10
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

雨轩智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值