【BZOJ1010】【HNOI2008】玩具装箱

232 篇文章 0 订阅
94 篇文章 0 订阅

题面

题目描述

P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1…N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过L。但他希望费用最小.

输入格式:

第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7

输出格式:

输出最小费用

输入样例#1:

5 4
3
4
2
1
4

输出样例#1:

1

题解

首先我们很容易想到DP
设f[i]表示当前选择到了第i个玩具,且第i个作为一个容器结束的位置的最小代价
然后很容易的想到了O(n^2)的DP

    for(int i=1;i<=n;++i)
        for(int j=0;j<i;++j)
            f[i]=min(f[i],f[j]+sqr(c[i]-c[j]+i-j-1-L));

其中,c为前缀和,sqr为平方

但是,这样做的复杂度太高,显然不能够AC
那么,我们不妨设f[i]从j转移过来,并且还有一个状态k
那么就有:

f[j]+(c[i]c[j]+ij1L)2<f[k]+(c[i]c[k]+ik1L)2

M=c[i]+i1L,T[j]=c[j]+j

f[j]+(MT[j])2<f[k]+(MT[k])2

=f[j]+M2+T[j]22MT[j]

=f[k]+M2+T[k]22MT[k]

(f[j]+T[j]2)(f[k]+T[k]2)2(T[j]T[k])>M

f[i],T[j]和M很显然是单调的
所以很显然的可以用到了 斜率优化

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
using namespace std;
#define MAX 50100
inline int read()
{
    int x=0,t=1;char ch=getchar();
    while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
    if(ch=='-')t=-1,ch=getchar();
    while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
    return x*t;
}
int n,L,c[MAX];
int s[MAX],h,t;
long long f[MAX],q[MAX],T[MAX];
long long sqr(long long x){return x*x;}
long long count(int x,int y)
{
    return ((f[x]+sqr(q[x]))-(f[y]+sqr(q[y])))/(2*(q[x]-q[y]));
}
int main()
{
    n=read();L=read();
    for(int i=1;i<=n;++i)c[i]=read()+c[i-1];
    for(int i=1;i<=n;++i)f[i]=1e18;
    /*
    for(int i=1;i<=n;++i)
        for(int j=0;j<i;++j)
            f[i]=min(f[i],f[j]+sqr(c[i]-c[j]+i-j-1-L));
    */
    //以上内容为O(n^2)的暴力转移
    for(int i=1;i<=n;++i)q[i]=c[i]+i;
    for(int i=1;i<=n;++i)T[i]=c[i]+i-L-1;
    for(int i=1;i<=n;++i)
    {
        while(h<t&&count(s[h],s[h+1])<=T[i])h++;
        int get=s[h];
        f[i]=f[get]+sqr(T[i]-q[get]);
        while(h<t&&count(s[t-1],s[t])>=count(s[t],i))t--;
        s[++t]=i;
    }
    printf("%lld\n",f[n]);
    return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值