【BZOJ4816】数字表格(莫比乌斯反演)

232 篇文章 0 订阅
33 篇文章 0 订阅

题面

BZOJ

i=1nj=1mf[gcd(i,j)]

题解

忽然不知道这个要怎么表示。。。
就写成这样吧。。

d=1ni=1nj=1mif(gcd(i,j)==d)f[gcd(i,j)]

直接把 f[d] 提出来
d=1nf[d]n/di=1m/dj=1[gcd(i,j)==1]

上面那个东西用莫比乌斯反演+数论分块可以 O(n)
外面套的这一层也可以数论分块求
于是,我们就得到了一个 O(n) 的做法

但是显然还不够

把上面那坨东西拎出来看

i=1n/dj=1m/d[gcd(i,j)==1]

太熟悉了
i=1n/dμ(i)[nid][mid]

还是老套路,
T=id
直接把 T 在整个式子里面提出来
T=1nd|Tf[d][n/T][m/T]μ(T/d)

有一些一样的东西
T=1n(d|Tf[d]μ(T/d))[n/T][m/T]

然后怎么办。。。。
很明显,已经可以对 [n/T][m/T] 分块了
那。。。里面的东西怎么办。。。
又不能线性筛。。。

喂喂。。。不能线性筛就暴力算呀
数据范围 106
每个数暴力算到他的倍数里面去
也就是 n1+n2+.....n106
这个东西也就是 15n 的样子
所以直接暴力把那个东西的前缀给求出来
就可以做到 O(n) 求解了

补充几个问题
[ni][mi] 次方的时候,可以直接膜一个 1e9+6
这样会块很多。。。
然后就是斐波那契数列的逆元提前算出来
要不然在暴力求解的时候就会多个 log

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MOD 1000000007
#define MAX 1000000
inline int read()
{
    int x=0,t=1;char ch=getchar();
    while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
    if(ch=='-')t=-1,ch=getchar();
    while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
    return x*t;
}
int fpow(int a,int b)
{
    int s=1;
    while(b){if(b&1)s=1ll*a*s%MOD;a=1ll*a*a%MOD;b>>=1;}
    return s;
}
int f[MAX+10],pri[MAX],tot;
int g[MAX+10];
int inv[MAX+10];
int F[MAX+10];
int mu[MAX+10];
bool zs[MAX+10];
int n,m;
void pre()
{
    f[1]=g[1]=F[0]=F[1]=1;
    mu[1]=1;zs[1]=true;
    for(int i=2;i<=MAX;++i)
    {
        f[i]=(f[i-1]+f[i-2])%MOD;
        g[i]=fpow(f[i],MOD-2);F[i]=1;
        if(!zs[i])pri[++tot]=i,mu[i]=-1;
        for(int j=1;j<=tot&&i*pri[j]<=MAX;++j)
        {
            zs[i*pri[j]]=true;
            if(i%pri[j])mu[i*pri[j]]=-mu[i];
            else{break;}
        }
    }
    for(int i=1;i<=MAX;++i)
    {
        if(!mu[i])continue;
        for(int j=i;j<=MAX;j+=i)
            F[j]=1ll*F[j]*(mu[i]==1?f[j/i]:g[j/i])%MOD;
    }
    for(int i=2;i<=MAX;++i)F[i]=1ll*F[i]*F[i-1]%MOD;
}
int main()
{
    pre();
    int T=read();
    while(T--)
    {
        n=read(),m=read();
        if(n>m)swap(n,m);
        int i=1,j,inv,ans=1;
        while(i<=n)
        {
            j=min(n/(n/i),m/(m/i));
            inv=1ll*F[j]*fpow(F[i-1],MOD-2)%MOD;
            ans=1ll*ans*fpow(inv,1ll*(n/i)*(m/i)%(MOD-1))%MOD;
            i=j+1;
        }
        printf("%d\n",(ans+MOD)%MOD);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值