题面
BZOJ
求
∏i=1n∏j=1mf[gcd(i,j)]
题解
忽然不知道这个要怎么表示。。。
就写成这样吧。。
∏d=1n∏i=1n∏j=1mif(gcd(i,j)==d)f[gcd(i,j)]
直接把 f[d] 提出来
∏d=1nf[d]∑n/di=1∑m/dj=1[gcd(i,j)==1]
上面那个东西用莫比乌斯反演+数论分块可以 O(n−−√) 求
外面套的这一层也可以数论分块求
于是,我们就得到了一个 O(n) 的做法
但是显然还不够
把上面那坨东西拎出来看
∑i=1n/d∑j=1m/d[gcd(i,j)==1]
太熟悉了
∑i=1n/dμ(i)[nid][mid]
还是老套路,
令 T=id
直接把 T 在整个式子里面提出来
有一些一样的东西
∏T=1n(∏d|Tf[d]μ(T/d))[n/T][m/T]
然后怎么办。。。。
很明显,已经可以对
[n/T][m/T]
分块了
那。。。里面的东西怎么办。。。
又不能线性筛。。。
喂喂。。。不能线性筛就暴力算呀
数据范围
106
每个数暴力算到他的倍数里面去
也就是
n1+n2+.....n106
这个东西也就是
15n
的样子
所以直接暴力把那个东西的前缀给求出来
就可以做到
O(n−−√)
求解了
补充几个问题
求
[ni][mi]
次方的时候,可以直接膜一个
1e9+6
这样会块很多。。。
然后就是斐波那契数列的逆元提前算出来
要不然在暴力求解的时候就会多个
log
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MOD 1000000007
#define MAX 1000000
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int fpow(int a,int b)
{
int s=1;
while(b){if(b&1)s=1ll*a*s%MOD;a=1ll*a*a%MOD;b>>=1;}
return s;
}
int f[MAX+10],pri[MAX],tot;
int g[MAX+10];
int inv[MAX+10];
int F[MAX+10];
int mu[MAX+10];
bool zs[MAX+10];
int n,m;
void pre()
{
f[1]=g[1]=F[0]=F[1]=1;
mu[1]=1;zs[1]=true;
for(int i=2;i<=MAX;++i)
{
f[i]=(f[i-1]+f[i-2])%MOD;
g[i]=fpow(f[i],MOD-2);F[i]=1;
if(!zs[i])pri[++tot]=i,mu[i]=-1;
for(int j=1;j<=tot&&i*pri[j]<=MAX;++j)
{
zs[i*pri[j]]=true;
if(i%pri[j])mu[i*pri[j]]=-mu[i];
else{break;}
}
}
for(int i=1;i<=MAX;++i)
{
if(!mu[i])continue;
for(int j=i;j<=MAX;j+=i)
F[j]=1ll*F[j]*(mu[i]==1?f[j/i]:g[j/i])%MOD;
}
for(int i=2;i<=MAX;++i)F[i]=1ll*F[i]*F[i-1]%MOD;
}
int main()
{
pre();
int T=read();
while(T--)
{
n=read(),m=read();
if(n>m)swap(n,m);
int i=1,j,inv,ans=1;
while(i<=n)
{
j=min(n/(n/i),m/(m/i));
inv=1ll*F[j]*fpow(F[i-1],MOD-2)%MOD;
ans=1ll*ans*fpow(inv,1ll*(n/i)*(m/i)%(MOD-1))%MOD;
i=j+1;
}
printf("%d\n",(ans+MOD)%MOD);
}
return 0;
}