PTA 7-24 汉密尔顿回路 (25分) 判断是否是哈密顿回路

著名的“汉密尔顿(Hamilton)回路问题”是要找一个能遍历图中所有顶点的简单回路(即每个顶点只访问 1 次)。本题就要求你判断任一给定的回路是否汉密尔顿回路。
输入格式:

首先第一行给出两个正整数:无向图中顶点数 N(2<N≤200)和边数 M。随后 M 行,每行给出一条边的两个端点,格式为“顶点1 顶点2”,其中顶点从 1 到N 编号。再下一行给出一个正整数 K,是待检验的回路的条数。随后 K 行,每行给出一条待检回路,格式为:

n V​1​​ V​2​​ ⋯ V​n​​

其中 n 是回路中的顶点数,V​i​​ 是路径上的顶点编号。
输出格式:

对每条待检回路,如果是汉密尔顿回路,就在一行中输出"YES",否则输出"NO"。
输入样例:

6 10
6 2
3 4
1 5
2 5
3 1
4 1
1 6
6 3
1 2
4 5
6
7 5 1 4 3 6 2 5
6 5 1 4 3 6 2
9 6 2 1 6 3 4 5 2 6
4 1 2 5 1
7 6 1 3 4 5 2 6
7 6 1 2 5 4 3 1

输出样例:

YES
NO
NO
NO
YES
NO

  • 个数不为 ( n + 1 ) (n+1) (n+1)就是false
  • 首尾不相同为false
  • for模拟行走路径,如果子节点没有下一个要到达的点就false
#define debug
#ifdef debug
#include <time.h>
#include "/home/majiao/mb.h"
#endif

#include <iostream>
#include <algorithm>
#include <vector>
#include <string.h>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <math.h>

#define MAXN (int(1024))
#define ll long long 
#define INF (0x7f7f7f7f)
#define fori(lef, rig) for(int i=lef; i<=rig; i++)
#define forj(lef, rig) for(int j=lef; j<=rig; j++)
#define fork(lef, rig) for(int k=lef; k<=rig; k++)
#define QAQ (0)

using namespace std;

#define show(x...)                             \
    do {                                       \
        cout << "\033[31;1m " << #x << " -> "; \
        err(x);                                \
    } while (0)

void err() { cout << "\033[39;0m" << endl; }
template<typename T, typename... A>
void err(T a, A... x) { cout << a << ' '; err(x...); }

namespace FastIO {

	char print_f[105];
	void read() { }
	void print() { putchar('\n'); }

	template <typename T, typename... T2>
		inline void read(T &x, T2 &... oth) {
			x = 0;
			char ch = getchar();
			ll f = 1;
			while (!isdigit(ch)) {
				if (ch == '-') f *= -1; 
				ch = getchar();
			}
			while (isdigit(ch)) {
				x = x * 10 + ch - 48;
				ch = getchar();
			}
			x *= f;
			read(oth...);
		}
	template <typename T, typename... T2>
		inline void print(T x, T2... oth) {
			ll p3=-1;
			if(x<0) putchar('-'), x=-x;
			do{
				print_f[++p3] = x%10 + 48;
			} while(x/=10);
			while(p3>=0) putchar(print_f[p3--]);
			putchar(' ');
			print(oth...);
		}
} // namespace FastIO
using FastIO::print;
using FastIO::read;

int n, m, Q, K, a[MAXN];
bool vis[MAXN];

set<int> G[MAXN];
bool check(int ptr) {                   //for模拟行走路径
	memset(vis, 0, sizeof(vis));
	bool ret = true;
	int u = a[ptr];
	for(int i=ptr; i<m; i++) {
		if(vis[u]) ret = false;
		vis[u] = true;
		int v = a[i+1];
		if(!G[u].count(v)) ret = false; //当u没有子节点v就false
		u = v;
	}
	return ret;
}

int main() {
#ifdef debug
	freopen("test", "r", stdin);
	// freopen("out_main", "w", stdout);
	clock_t stime = clock();
#endif
	read(n, m);
	int u, v;
	while(m --) {
		read(u, v);
		G[u].insert(v), G[v].insert(u);
	}
	read(Q);
	while(Q--) {
		read(m);
		for(int i=1; i<=m; i++) read(a[i]);
		if(m != n+1 || a[1] != a[m]) { //个数不为n+1, 或首尾不同都是false
			printf("NO\n");
			continue ;
		}
		bool ok = check(1);            //从第一个位置开始check
		printf("%s\n", ok ? "YES" : "NO");
	}





#ifdef debug
	clock_t etime = clock();
	printf("rum time: %lf 秒\n",(double) (etime-stime)/CLOCKS_PER_SEC);
#endif 
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值