题目描述
如题,给出一个 NNN 次函数,保证在范围 [l,r][l, r][l,r] 内存在一点 xxx,使得 [l,x][l, x][l,x]
上单调增,[x,r][x, r][x,r] 上单调减。试求出 xxx 的值。 输入格式第一行一次包含一个正整数 NNN 和两个实数 l,rl, rl,r,含义如题目描述所示。
第二行包含 N+1N + 1N+1 个实数,从高到低依次表示该 NNN 次函数各项的系数。 输出格式
输出为一行,包含一个实数,即为 xxx 的值。四舍五入保留 555 位小数。 输入输出样例 输入 #1
3 -0.9981 0.5 1 -3 -3 1
输出 #1
-0.41421
说明/提示
对于 100%100%100% 的数据,7≤N≤137 \le N \le 137≤N≤13。
题意 : 给一个一定有极值点
的函数的一小段([L,R]内
),要我们求出极值点的横坐标
标准三分法
- 计算
高次式子
如下
for(int i=n; i>=0; i--) sum = sum * x + a[i];
- 每次选取左边扩大
1/3
的值和右边缩小1/3
的值进行比对
并移动矮
的那边
while(fabs(rig-lef) >= eps) {
double fra = (rig-lef)/3.; //计算出区间的1/3
double llef = cap(lef+fra);
double rrig = cap(rig-fra);
if(llef <= rrig) //移动矮的那边
lef = lef + fra;
else
rig = rig - fra;
}
完整代码如下
#define debug
#ifdef debug
#include <time.h>
#endif
#include <iostream>
#include <algorithm>
#include <vector>
#include <string.h>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <math.h>
#define MAXN ((int)1e5+7)
#define ll long long int
#define INF (0x7f7f7f7f)
#define fori(lef, rig) for(int i=lef; i<=rig; i++)
#define forj(lef, rig) for(int j=lef; j<=rig; j++)
#define fork(lef, rig) for(int k=lef; k<=rig; k++)
#define QAQ (0)
using namespace std;
#define show(x...) \
do { \
cout << "\033[31;1m " << #x << " -> "; \
err(x); \
} while (0)
void err() { cout << "\033[39;0m" << endl; }
template<typename T, typename... A>
void err(T a, A... x) { cout << a << ' '; err(x...); }
namespace FastIO{
char print_f[105];
void read() {}
void print() { putchar('\n'); }
template <typename T, typename... T2>
inline void read(T &x, T2 &... oth) {
x = 0;
char ch = getchar();
ll f = 1;
while (!isdigit(ch)) {
if (ch == '-') f *= -1;
ch = getchar();
}
while (isdigit(ch)) {
x = x * 10 + ch - 48;
ch = getchar();
}
x *= f;
read(oth...);
}
template <typename T, typename... T2>
inline void print(T x, T2... oth) {
ll p3=-1;
if(x<0) putchar('-'), x=-x;
do{
print_f[++p3] = x%10 + 48;
} while(x/=10);
while(p3>=0) putchar(print_f[p3--]);
putchar(' ');
print(oth...);
}
} // namespace FastIO
using FastIO::print;
using FastIO::read;
int n, m, Q, K;
double a[32];
double cap(double x) {
double sum = 0;
for(int i=n; i>=0; i--)
sum = sum * x + a[i];
return sum;
}
#define eps (1e-6)
signed main() {
#ifdef debug
freopen("test.txt", "r", stdin);
clock_t stime = clock();
#endif
double lef, rig;
scanf("%d %lf %lf ", &n, &lef, &rig);
for(int i=n; i>=0; i--)
scanf("%lf ", &a[i]);
while(fabs(rig-lef) >= eps) {
double fra = (rig-lef)/3.;
double llef = cap(lef+fra);
double rrig = cap(rig-fra);
if(llef <= rrig) lef = lef + fra;
else rig = rig - fra;
}
printf("%.5lf\n", lef);
#ifdef debug
clock_t etime = clock();
printf("rum time: %lf 秒\n",(double) (etime-stime)/CLOCKS_PER_SEC);
#endif
return 0;
}