洛谷P3382 【模板】三分法 三分法模板题

题目描述

如题,给出一个 NNN 次函数,保证在范围 [l,r][l, r][l,r] 内存在一点 xxx,使得 [l,x][l, x][l,x]
上单调增,[x,r][x, r][x,r] 上单调减。试求出 xxx 的值。 输入格式

第一行一次包含一个正整数 NNN 和两个实数 l,rl, rl,r,含义如题目描述所示。

第二行包含 N+1N + 1N+1 个实数,从高到低依次表示该 NNN 次函数各项的系数。 输出格式

输出为一行,包含一个实数,即为 xxx 的值。四舍五入保留 555 位小数。 输入输出样例 输入 #1

3 -0.9981 0.5 1 -3 -3 1

输出 #1

-0.41421

说明/提示

对于 100%100%100% 的数据,7≤N≤137 \le N \le 137≤N≤13。


题意 : 给一个一定有极值点的函数的一小段([L,R]内),要我们求出极值点的横坐标
标准三分法

  • 计算高次式子如下
    for(int i=n; i>=0; i--) sum = sum * x + a[i];
  • 每次选取左边扩大1/3的值和右边缩小1/3的值进行比对
    并移动的那边
while(fabs(rig-lef) >= eps) {
    double fra = (rig-lef)/3.; //计算出区间的1/3
    double llef = cap(lef+fra);
    double rrig = cap(rig-fra);
    if(llef <= rrig) //移动矮的那边
    	lef = lef + fra;
    else 
    	rig = rig - fra;
}

完整代码如下

#define debug
#ifdef debug
#include <time.h>
#endif

#include <iostream>
#include <algorithm>
#include <vector>
#include <string.h>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <math.h>

#define MAXN ((int)1e5+7)
#define ll long long int
#define INF (0x7f7f7f7f)
#define fori(lef, rig) for(int i=lef; i<=rig; i++)
#define forj(lef, rig) for(int j=lef; j<=rig; j++)
#define fork(lef, rig) for(int k=lef; k<=rig; k++)
#define QAQ (0)

using namespace std;

#define show(x...) \
    do { \
       cout << "\033[31;1m " << #x << " -> "; \
       err(x); \
    } while (0)

void err() { cout << "\033[39;0m" << endl; }
template<typename T, typename... A>
void err(T a, A... x) { cout << a << ' '; err(x...); }

namespace FastIO{

    char print_f[105];
    void read() {}
    void print() { putchar('\n'); }

    template <typename T, typename... T2>
       inline void read(T &x, T2 &... oth) {
           x = 0;
           char ch = getchar();
           ll f = 1;
           while (!isdigit(ch)) {
               if (ch == '-') f *= -1; 
               ch = getchar();
           }
           while (isdigit(ch)) {
               x = x * 10 + ch - 48;
               ch = getchar();
           }
           x *= f;
           read(oth...);
       }
    template <typename T, typename... T2>
       inline void print(T x, T2... oth) {
           ll p3=-1;
           if(x<0) putchar('-'), x=-x;
           do{
                print_f[++p3] = x%10 + 48;
           } while(x/=10);
           while(p3>=0) putchar(print_f[p3--]);
           putchar(' ');
           print(oth...);
       }
} // namespace FastIO
using FastIO::print;
using FastIO::read;

int n, m, Q, K;
double a[32];

double cap(double x) {
    double sum = 0;
    for(int i=n; i>=0; i--)
        sum = sum * x + a[i];
    return sum;
}

#define eps (1e-6)

signed main() {
#ifdef debug
    freopen("test.txt", "r", stdin);
    clock_t stime = clock();
#endif
    double lef, rig;
    scanf("%d %lf %lf ", &n, &lef, &rig);
    for(int i=n; i>=0; i--) 
        scanf("%lf ", &a[i]);
    while(fabs(rig-lef) >= eps) {
        double fra = (rig-lef)/3.;
        double llef = cap(lef+fra);
        double rrig = cap(rig-fra);
        if(llef <= rrig) lef = lef + fra;
        else rig = rig - fra;
    }
    printf("%.5lf\n", lef);



#ifdef debug
   clock_t etime = clock();
   printf("rum time: %lf 秒\n",(double) (etime-stime)/CLOCKS_PER_SEC);
#endif 
   return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值