前段时间爆火的manus ,首个通用AI智能体,其核心突破在于将AI从「对话工具」升级为「执行工具」,能够自主完成复杂任务并交付可直接使用的成果。你一定好奇它如何实现的? 今天就来介绍这个神秘嘉宾----MCP ,虽然manus 官方并没有承认完全使用MCP。但这不重要,重要的是,给我5分钟时间,一文带你看明白什么是MCP。
官方解释:
MCP(Model Context Protocol)是由Anthropic提出的标准化协议,旨在解决AI模型与外部数据/工具的无缝集成问题,被类比为“AI领域的USB-C接口”
你一定觉得很懵逼吧,没关系这篇文章将从MCP是什么?解决了哪些AI痛点?能做什么?以及可以如何体验到MCP? 做一个通俗易懂版解释。
MCP是什么?
为了方便大家理解,我用三个生活化类比说明MCP 是什么:
1. AI的“USB-C接口”
就像手机用USB-C统一充电口,MCP给AI制定了统一的数据和工具连接标准。以前每个AI连数据库、API都要“定制数据线”,现在所有AI都能用同一接口连接任何工具。
2. 万能翻译官
不同工具(比如数据库、邮件系统)有各自的“语言”,AI听不懂。MCP像翻译官,把它们的语言转成AI能理解的标准化指令,避免“鸡同鸭讲”。
3. AI的“超级工具箱”
过去AI只能靠死记硬背(训练数据),现在通过MCP,AI能随时打开工具箱(外部数据源和工具),像查资料、发邮件、写代码都能现学现用。
---
为什么而存在,解决当前AI的四大痛点
MCP解决AI痛点对比表
问题 | 痛点描述 | 解决方案 |
“知识封闭”问题 | AI训练完就“定型”,无法获取新知识(比如不知道今天的新闻) | MCP让AI能实时查资料、读文件,像人一样持续学习 |
“工具适配难”问题 | 每连一个新工具(如GitHub、Excel)都要写一堆代码适配 | MCP统一接口,一次开发,所有AI都能用 |
“人工拼接”低效问题 | 完成复杂任务需手动切换多个AI(比如先用GPT写文案,再用Stable Diffusion作图) | MCP让AI们自动协作,像流水线一样完成全流程 |
“数据孤岛”问题 | 公司数据散落在ERP、CRM等系统,AI无法综合分析 | MCP一键打通所有系统,让AI做全局分析 |
---
MCP能做什么?
我的理解,之前的Manus 就是一种MCP 的具体应用,很好的例子。基于MCP 的产品会越来越多,AI 从对话工具变成执行工具的路走的越来越清晰,所谓拥有某个领域的技术工种,会渐渐被AI 替代。当然替代可能太夸张,至少简化了很多步骤,入门门槛会变得越来越低。
1. 让AI“活”起来
- 动态获取最新信息:比如查天气、读你的邮件、分析公司数据库,不用再依赖过时的训练数据。
- 调用工具完成任务:自动发邮件、生成报表、写代码,甚至帮你订机票。
2. 打破“信息孤岛”
企业数据(如财务系统、客户资料)、个人文件(如微信聊天记录)原本散落在不同地方,MCP能让AI一键打通这些数据,像拼图一样拼出完整信息。
3. 安全协作
通过权限控制和本地化部署,避免敏感数据泄露。比如公司数据库只允许AI查销售数据,不能看工资表。
---
现有集成MCP的AI工具及体验方式
以下是目前支持或集成MCP协议的主流工具,覆盖开发者工具、企业应用和通用客户端等场景,想体验的人可以参考一下哦:
- 开发者优先尝试:Spring AI(Java生态)或OpenMauns(Python生态),可快速体验MCP与本地工具的集成。
- 终端用户推荐:ChatMCP或Claude Desktop,操作门槛低,适合非技术人员体验。
- 企业场景:微软Azure AI Agent或Claude for Work,安全性高且支持复杂业务系统。
MCP像AI世界的“基础设施”
它让AI从“单机版”升级为“联网版”,从“死记硬背”变成“活学活用”。未来,你只需要告诉AI“帮我做季度报告”,它就能自动查数据、画图表、写总结,而你只需喝咖啡等结果 。