第九讲 Join 算法

本文详细解释了数据库中Join的概念,包括规范化带来的好处和Join的需求,重点介绍了内连接算法(如嵌套循环、排序-归并和哈希Join),讨论了各种连接操作的成本分析、输出策略和优化技术,以及在不同场景下的适用性。

1. 为什么我们需要 Join

我们对关系数据库中的表【tables】进行规范化【normalize】,这样我们就减少了信息的冗余和浪费的空间,但是现在我们为了可以响应传入的查询【Query】,我们必须把这些分离的东西重新组合在一起,以重建原始元组,而不会丢失任何信息,这就是 Join 要做的。

2 Join 算法

我们本节将重点关注使用内等联接算法【inner equijoin algorithms】执行二元连接(两个表)。

  • 可以调整这些算法以支持其他连接。
  • 多路【Multi-Way】连接主要存在于研究文献中。

一般来说,我们希望较小的表始终是查询计划【QueryPlan】中的左表【Left Tabe】(左指的是它位于 Join 操作符的左边)(“外部表【outer table】”)。

  • 优化器在生成物理计划【physical plan】时将(尝试)解决这个问题。

3. Join 操作符

在前面讲排序算法时,我们认识了查询计划。并且也看到了 SQL 被转换为查询计划的操作符树。

在 Join 的操作符实现中,我们有两个方面需要考虑:

考虑点 1:输出【Output】:连接运算符【Join Operator】向查询计划树中的父操作符发送哪些数据?
考虑点 2:成本分析标准:我们如何确定两种算法中,那种连接算法最优?

3.1 操作符输出

对于在连接属性【join attributes】上匹配的元组 r ∈ R 和元组 s ∈ S,将 r& s 连接在一起形成一个新元组。


输出内容可能有所不同:

  • 取决于处理模型【processing model】,比如如果是排序-归并 Join【Sort Merge Join】 ,那么数据是有序的,但是如果是哈希 Join,那么数据就是无序的
  • 取决于存储模型【storage model】,比如行存储还是列存储,数据的组织是不同的
  • 取决于查询【Query】对数据的要求,比如是全部字段返回,还是只返回特定几个字段
3.1.1 操作符输出:DATA(直接输出数据)

提前物化【Early Materialization】:将外部元组和内部元组中的属性值复制到新的输出元组中。

  • 缺点:在表非常宽的时候,我们将有非常多的属性,我们拷贝了很多用不到的属性
  • 优点:查询计划中的后续操作符永远不需要返回基表来获取更多数据,因为连接操作符返回的数据就是完整的。 

3.1.2 操作符输出:Record ID

延迟物化【Late Materialization】:仅复制连接键【Join Keys】以及匹配元组的Record ID。

  • 优点:非常适合列存储,因为 DBMS 不会复制查询不需要的数据。
  • 缺点:后面进行映射操作时,可能需要回基表

3.2 成本分析标准【Cost Analysis Criteria】

假定:

  • 表 R 占据 M 个页面,R 表中有 m 个元组
  • 表 S 占据 N 个页面,S 表中有 n 个元组

成本指标:用于计算连接【Join】所使用的 IO 数量。

我们将忽略计算机计算的成本,我们也忽略操作符的输出成本【output cost】,因为这取决于数据,而我们尚无法计算。

3.2.1 Join VS Cross Product

我们这里区分一下 Join 和 笛卡尔积的区别:

  • R⨝S 是最常见的运算,因此必须仔细优化。
  • R×S 后进行选择【selection】的效率很低,因为笛卡尔积很大。

有很多降低连接成本的算法,但没有一种算法可以在所有场景下都有效。

注:很少有系统回采用笛卡尔积,因为它太慢了,除非是查询指定进行笛卡尔积操作。

3.2.2 Join 算法

嵌套循环连接【Nested Loop Join】

  • Simple / Stupid
  • Block
  • Index

排序合并连接【Sort Merge Join】
哈希连接 【Hash Join】

3.2.2.1 嵌套循环连接【Nested Loop Join】

 

Naïve嵌套循环连接

我们首先认识左表/外表和右表/内表,我们要做

遗传算法是一种智能优化算法,常用于求解函数最值,以下是其方法和示例: ### 方法步骤 1. **定义目标函数**:明确需要求解最值的函数,例如求最大值的函数 $f(x)$。 2. **设置遗传算法参数**:包括染色体的长度、种群大小、最大迭代次数、交叉概率和变异概率等。染色体长度取决于问题的编码方式,种群大小影响算法的搜索范围,最大迭代次数决定算法的终止条件,交叉概率和变异概率控制遗传操作的频率 [^1]。 3. **初始化种群**:随机生成初始群体,每个个体是一个由 0 和 1 组成的染色体。例如群体规模大小取为 4,可随机产生如 011101,101011,011100,111001 这样的个体 [^1][^2]。 4. **计算适应度值**:以个体适应度的大小来评定各个个体的优劣程度,从而决定其遗传机会的大小。若目标函数总取非负值,并且以求函数最大值为优化目标,可直接将目标函数值作为适应度值 [^2]。 5. **选择操作**:根据个体的适应度值,选择适应度高的个体进入下一代,以保留优良基因。 6. **交叉操作**:对选中的个体进行交叉操作,交换部分染色体信息,产生新的个体,增加种群的多样性。 7. **变异操作**:变异由变异因子决定,在随机生成的位置中对二进制数进行取反操作,即 0 变为 1,1 变为 0。变异可能会丢失某些关键信息,也可能创造出有价值的信息,可以防止遗传算法快速收敛 [^4]。 8. **迭代进化**:重复步骤 4 - 7,直到达到最大迭代次数。 9. **输出结果**:输出每一代的最优解和最优值。 ### 示例代码 ```python import numpy as np # 定义目标函数 def f(x): return -x**2 + 5 # 示例函数 # 遗传算法参数设置 chromosome_length = 10 # 染色体长度 population_size = 20 # 种群大小 max_generations = 100 # 最大迭代次数 crossover_prob = 0.8 # 交叉概率 mutation_prob = 0.01 # 变异概率 # 初始化种群 def initialize_population(population_size, chromosome_length): return np.random.randint(0, 2, (population_size, chromosome_length)) # 二进制转十进制 def binary_to_decimal(binary): return int(''.join(map(str, binary)), 2) # 计算适应度值 def calculate_fitness(population): fitness = [] for chromosome in population: x = binary_to_decimal(chromosome) fitness.append(f(x)) return np.array(fitness) # 选择操作 def selection(population, fitness): total_fitness = np.sum(fitness) probabilities = fitness / total_fitness selected_indices = np.random.choice(len(population), size=len(population), p=probabilities) return population[selected_indices] # 交叉操作 def crossover(parent1, parent2): if np.random.rand() < crossover_prob: crossover_point = np.random.randint(1, len(parent1)) child1 = np.concatenate((parent1[:crossover_point], parent2[crossover_point:])) child2 = np.concatenate((parent2[:crossover_point], parent1[crossover_point:])) return child1, child2 return parent1, parent2 # 变异操作 def mutation(chromosome): for i in range(len(chromosome)): if np.random.rand() < mutation_prob: chromosome[i] = 1 - chromosome[i] return chromosome # 主循环 pop = initialize_population(population_size, chromosome_length) for generation in range(max_generations): fitness = calculate_fitness(pop) best_index = np.argmax(fitness) best_solution = binary_to_decimal(pop[best_index]) best_value = f(best_solution) print(f"Generation {generation}: Best solution = {best_solution}, Best value = {best_value}") new_pop = [] for i in range(population_size // 2): parents = selection(pop, fitness) parent1, parent2 = parents[0], parents[1] child1, child2 = crossover(parent1, parent2) child1 = mutation(child1) child2 = mutation(child2) new_pop.extend([child1, child2]) pop = np.array(new_pop) ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值