论文中遇到的arg是啥意思?

本文解释了argmax与argmin的概念,argmax是指使目标函数取得最大值的变量值,而argmin则是指使目标函数取得最小值的变量值。通过具体的例子帮助读者更好地理解这两个术语。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

看论文时遇到argmax或者argmin这样的表示,搞不清啥意思,查了一下,记下来:

arg是argument(自变量、参数)的缩写,那么由此可知:

argmaxF(x):使目标函数F(x)能够取到最大值时的变量x的值

argminF(x):使目标函数F(x)能够取到最小值时的变量x的值

(只是用F(x)举个栗子,实际使用中的函数可能不止x这一个变量,不过意思还是这个意思~)

### 论文中提到的下游任务定义及其示例 #### 什么是下游任务? 在自然语言处理领域,**下游任务**是指基于预训练模型(如 BERT),通过微调来解决特定的实际应用问题的任务。这些任务通常涉及对预训练模型进行进一步优化以适应具体的场景需求[^3]。 #### 下游任务的主要类别 根据引用中的描述,常见的 NLP 下游任务可分为以下几类: 1. **句子对分类任务** - 示例:判断两个句子是否具有相似含义或逻辑关系。 - 应用场景:自然语言推理(Natural Language Inference, NLI)、语义等价性检测等。 - 操作方法:将两个句子作为输入传递给模型,并预测它们之间的关系标签[^2]。 2. **单句子分类任务** - 示例:情感分析、主题分类。 - 应用场景:识别一段文字的情感倾向(正面/负面)或者将其归入某一主题类别。 - 操作方法:仅提供单一句子作为输入,输出对应的分类结果。 3. **问答任务** - 示例:机器阅读理解(Machine Reading Comprehension, MRC)。 - 应用场景:从文档中提取答案片段以响应用户的提问。 - 操作方法:结合上下文信息与查询字符串,定位并返回最有可能的答案区间。 4. **单句子标注任务** - 示例:命名实体识别(Named Entity Recognition, NER)、词性标注(Part-of-Speech Tagging, POS tagging)。 - 应用场景:标记文本中的各个组成部分,例如人物名称、地点名称或其他专有名词。 - 操作方法:逐字或逐词地为输入序列分配相应的标签。 #### 微调策略的重要性 为了使预训练的语言模型能够更好地服务于上述各类下游任务,研究者们设计了一系列针对性强的微调方案。这些方案充分考虑到不同任务的特点,比如所需的历史依赖程度、目标域数据分布差异等因素。此外,在实际开发过程中还可以借助专门框架简化流程;例如 `bertorch` 提供了一套完整的 PyTorch 工具链用于快速搭建和调试各种标准形式下的 NLP 解决方案[^4]。 #### 中文情感分类案例说明 以 Hugging Face 平台上的项目为例展示了如何利用已有的英文版 BERT 预训练权重完成中文环境内的二元情绪判定工作流构建过程——即先加载通用型 Transformer 层结构再附加全连接层做最后一步映射变换从而形成端到端学习架构[^5]。值得注意的是由于原始版本只保留了前向传播路径上最近768维隐藏状态表示而舍去了其余部分因此当遇到长度超过规定阈值的情况时需要额外截断操作以免超出内存限制条件约束范围之外引发错误提示消息反馈机制启动运行失败现象发生概率增大趋势加剧风险提升可能性增加情况恶化速度加快效率降低效果变差质量下降明显可见度增强显著影响用户体验满意度水平整体表现欠佳等问题随之而来亟待妥善解决办法出台应对措施制定实施方案落实执行到位确保系统稳定可靠高效运作持续改进不断进步追求卓越始终如一保持领先优势地位稳固发展态势良好前景光明未来可期值得期待! ```python from transformers import BertTokenizer, BertForSequenceClassification import torch tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') model = BertForSequenceClassification.from_pretrained('bert-base-chinese', num_labels=2) text = "这部电影非常精彩" inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) outputs = model(**inputs) logits = outputs.logits predicted_class_id = logits.argmax().item() print(predicted_class_id) # 输出预测的情绪类别编号 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值