论文中出现的arg max/min含义

本文介绍了如何使用argmax和argmin来确定函数的最大值和最小值对应的变量取值,这是优化算法和数学分析中常用的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

argument of the maximum/minimum

arg max f(x): 当f(x)取最大值时,x的取值

arg min f(x):当f(x)取最小值时,x的取值

### YOLOv1 和 YOLOv2 的论文总结 #### YOLOv1 (You Only Look Once) YOLOv1 是一种单阶段的目标检测方法,它通过将目标检测视为一个回归问题来实现端到端训练。以下是其主要特点: - **统一框架**:YOLOv1 将整个图像划分为 S×S 的网格,并预测每个网格单元中的 B 个边界框及其置信度分数以及 C 类别的条件概率[^2]。 - **损失函数**:YOLOv1 使用了一个多部分的损失函数,该函数由坐标误差、宽高误差、置信度误差和类别误差组成。具体来说,对于有对象的网格单元,模型会惩罚预测框中心坐标的偏差;而对于无对象的网格,则更关注降低置信度得分。 - **优点与局限性**: - 高效实时处理能力使其成为视频流分析的理想选择。 - 存在较多定位错误,尤其是在复杂场景下表现不佳。 - 召回率低于基于区域提议的方法如 Faster R-CNN 等。 ```python def yolo_v1_loss(predictions, targets): lambda_coord = 5 lambda_noobj = 0.5 # 坐标误差项权重较大 coord_loss = lambda_coord * ((predictions[:, :, :2] - targets[:, :, :2])**2).sum() # 宽高误差平方根形式减少大框影响 size_loss = lambda_coord * (((torch.sqrt(predictions[:, :, 2:4]) - torch.sqrt(targets[:, :, 2:4]))**2).sum()) # 对象存在与否的置信度损失 obj_confidence_loss = ((predictions[:, :, 4] - targets[:, :, 4])**2).sum() no_obj_confidence_loss = lambda_noobj * ((predictions[:, :, 5:] - targets[:, :, 5:])**2).sum() class_loss = ((predictions[:, :, :] - targets[:, :, :])**2).sum() total_loss = coord_loss + size_loss + obj_confidence_loss + no_obj_confidence_loss + class_loss return total_loss ``` --- #### YOLOv2 (YOLO9000) YOLOv2 在保持速度的同时显著提高了精度,引入了许多改进措施: - **Batch Normalization**:每一层都加入了批量标准化操作,这不仅加速收敛还减少了正则化需求[^1]。 - **High Resolution Classifier**:先用 ImageNet 数据集预训练一个更高分辨率(448x448)下的分类器再微调至检测任务上,从而提升泛化性能。 - **Anchor Boxes & Dimension Clusters**:采用聚类技术生成锚点框代替固定大小候选窗口,使得模型能够更好地适应不同形状物体尺寸分布特性。 - **Direct Location Prediction**:为了稳定训练过程并提高位置预测准确性,直接让网络输出偏移量而非绝对值作为最终结果的一部分输入给后续计算模块使用。 - **Multi-Scale Training**:随机调整网络输入图片尺度范围内的任意合法数值来进行动态切换学习策略,增强鲁棒性和灵活性。 ```python import numpy as np class AnchorBoxGenerator: def __init__(self, k=5): self.k = k def iou(self, box1, box2): xi1 = max(box1[0], box2[0]) yi1 = max(box1[1], box2[1]) xi2 = min(box1[2], box2[2]) yi2 = min(box1[3], box2[3]) inter_area = max(0, xi2-xi1) * max(0, yi2-yi1) box1_area = (box1[2]-box1[0])*(box1[3]-box1[1]) box2_area = (box2[2]-box2[0])*(box2[3]-box2[1]) union_area = float(box1_area + box2_area - inter_area) return inter_area / union_area if union_area != 0 else 0 def generate_anchors(self, boxes): cluster_centers = [] distances = [] while len(cluster_centers)<self.k: new_center_idx=np.argmin([np.mean([self.iou(b,c)**2 for b in boxes])for c in cluster_centers or [None]]) cluster_centers.append(boxes[new_center_idx].copy()) return cluster_centers ``` --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值