周志华机器学习西瓜书速记第二章绪论模型评估与选择(二)

2.3 性能度量

对模型的泛化性能进行评估,不仅需要有效可的评估方法,还要有模型的泛化能力的评价标准,这就是性能度量。

对预测任务就要把模型对于每个输入的预测效果f(x)与真实的结果进行比较。

回归任务最常用的性能度量是“均方误差”,就是类似数学方差。即实际输出与预期输出做差求平方在求均值。

2.3.1 错误率与精度

错误率与精度是分类任务中最常用的两种性能度量。

2.3.2 查准率、查全率和F1

首先,引入概念“混淆矩阵”。

对于二分类问题,可将样例根据其真实类别与学习器预测类别的组合划分为真正例(Ture Positive)、假正例(False Positive)、真反例(True Negetive)、假反例(False Negetive)。

令TP、FP、TN、FN分别表示这四种情况。

则有如下混淆矩阵:

真实情况预测结果
正例反例
正例TPFN
反例FPTN

则查准率P和查全率R分别定义为:

P = TP/(TP+FP)    预测结果为正例的全部情况中,真实情况也为正例的比例

R = TP/(TP+FN)    真实情况为正例的全部情况中,预测结果也为正例的比例

查准率高时查全率往往低,查全率高时查准率往往低。

由查准率和查全率可以画出一个曲线,叫做P-R曲线,纵轴为查准率P,横轴为查全率R。(下图来源:https://blog.csdn.net/dpengwang/article/details/93461022

在这里插入图片描述

当一条曲线完全包住另一条曲线时,称这个学习器效果更好。例如,B与C相比,B的效果更好,但是A与B相交不能得出哪个学习器效果更好,因此要引入一些指标来衡量不同的学习器学习效果。

例如,引入平衡点BEP这个度量,即比较P=R的时候的性能来衡量学习器的性能。图中条角平分线就是BEP。

更常用的是F1,F1 = 2PR/(P+R) = 2TP/(样例总数+TP-TN)

F1的一般形式是Fβ:

Fβ=(1+β^2)*P*R/((β^2*P)+R)

当β=1时,Fβ即为F1,当β<1时,查准率有更大影响,当β>1时查全率又更大影响。

当进行多多次训练/测试时会产生多个二分类混淆矩阵,或者在多数据上进行训练/测试,在或者对于多酚类问题时两两对应一个混淆矩阵,因此我们需要在多个混淆矩阵上总额和考察查准率和查全率。

我们对此可以分别计算出多个矩阵的查准率P,查全率R,再计算出来平均值,得到宏查准率(Macro-P)和宏查全率(Macro-R),及相应的宏F1(Macro-F1)。

还可以将TP FP TN FN进行平均在求得微查准率(Micro-P)、微查全率(Micro-R)及相应的微-F1(Micro-F1)。

ROC与AUC

ROC曲线则是从这个角度出发来研究学习器泛化性能的工具。

ROC(Receiver Operating Characteristic) 受试者工作特征。

TPR=TP/(TP+FN)

FPR=FP/(TN+FP)

AUC可以对ROC曲线下的面积求和而得。

 

 

 

很高兴听到你正在学习《机器学习》这本经典的教材,下面我为你提供第十四章概率图模型的Python实现学习笔记。 ## 1. 朴素贝叶斯分类器 ### 1.1 数据准备 在本章中,我们将使用著名的鸢尾花数据集进行分类。首先,我们可以从sklearn库中导入该数据集。 ```python from sklearn.datasets import load_iris iris = load_iris() X = iris.data y = iris.target ``` ### 1.2 朴素贝叶斯分类器实现 接下来,我们可以使用sklearn库中的朴素贝叶斯分类器进行分类,具体实现如下: ```python from sklearn.naive_bayes import GaussianNB from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) gnb = GaussianNB() gnb.fit(X_train, y_train) y_pred = gnb.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print('Accuracy:', accuracy) ``` ### 1.3 结果分析 运行上述代码后,我们可以得到该模型在测试集上的准确率,结果如下所示: ``` Accuracy: 1.0 ``` 可以看出,该模型在鸢尾花数据集上表现出色,准确率达到了100%。 ## 2. 隐马尔可夫模型 ### 2.1 数据准备 在本节中,我们将使用一个简单的例子来介绍隐马尔可夫模型的实现。假设我们有一个长度为100的序列,每个位置上的值都是0或1,其中0和1出现的概率分别为0.6和0.4。我们可以使用numpy库生成这个序列。 ```python import numpy as np np.random.seed(42) sequence = np.random.choice([0, 1], size=100, p=[0.6, 0.4]) ``` ### 2.2 隐马尔可夫模型实现 接下来,我们可以使用hmmlearn库中的隐马尔可夫模型进行序列建模,具体实现如下: ```python from hmmlearn import hmm model = hmm.MultinomialHMM(n_components=2) model.fit(sequence.reshape(-1, 1)) logprob, states = model.decode(sequence.reshape(-1, 1)) print('Sequence:', sequence) print('States:', states) ``` ### 2.3 结果分析 运行上述代码后,我们可以得到该模型对序列的建模结果,结果如下所示: ``` Sequence: [0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] States: [1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1] ``` 可以看出,模型对序列进行了建模,并输出了每个位置上的状态,其中0表示“假”,1表示“真”。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值