faster_rcnn_end2end.sh源码分析

这是一个关于Faster R-CNN的end2end训练脚本的详细分析,脚本用于在PASCAL VOC或COCO数据集上训练和测试神经网络模型。脚本首先设置环境变量,然后根据给定的数据集类型(如PASCAL VOC或COCO)调整训练参数,包括迭代次数、训练和测试的IMDB(Image Database)以及路径。接着,使用train_net.py进行训练,并记录日志,最后通过test_net.py进行模型测试。
摘要由CSDN通过智能技术生成
#!/bin/bash
# Usage:
# ./experiments/scripts/faster_rcnn_end2end.sh GPU NET DATASET [options args to {train,test}_net.py]
# DATASET is either pascal_voc or coco.
#
# Example:
# ./experiments/scripts/faster_rcnn_end2end.sh 0 VGG_CNN_M_1024 pascal_voc \
#   --set EXP_DIR foobar RNG_SEED 42 TRAIN.SCALES "[400, 500, 600, 700]"

set -x    #将后面执行的命令输出到屏幕
set -e    #如果命令的返回值不是0 则退出shell

export PYTHONUNBUFFERED="True"   #和缓存有关系的一个变量,使得按顺序输出

GPU_ID=$1     #这一部分是读取命令信息,包括GPU的编号,网络类型,以及数据集类型等       
NET=$2
NET_lc=${NET,,}
DATASET=$3

array=( $@ )           
len=${#array[@]}
EXTRA_ARGS=${array[@]:3:$len}
EXTRA_ARGS_SLUG=${EXTRA_ARGS// /_}

case $DATASET in #根据输入数据类型,进行不同的处理,分为3种情况pascal_voc; coco; 错误类型
  pascal_voc)
    TRAIN_IMDB="voc_2007_trainval"  #定义相应的变量
    TEST_IMDB="voc_2007_test"
    PT_DIR="pascal_voc"
    ITERS=70000              #定义迭代次数
    ;;
  coco)
    # This is a very long and slow training schedule
    # You can probably use fewer iterations and reduce the
    # time to the LR drop (set in the solver to 350,000 iterations).
    TRAIN_IMDB="coco_2014_train"     #定义相应的变量
    TEST_IMDB="coco_2014_minival"
    PT_DIR="coco"
    ITERS=490000                     #定义迭代次数
    ;;
  *)
    echo "No dataset given"
    exit
    ;;
esac

LOG="experiments/logs/faster_rcnn_end2end_${NET}_${EXTRA_ARGS_SLUG}.txt.`date +'%Y-%m-%d_%H-%M-%S'`"  #训练日志的存储路径
exec &> >(tee -a "$LOG")
echo Logging output to "$LOG"

time ./tools/train_net.py --gpu ${GPU_ID} \     #加载网络训练的相关参数并进行训练
  --solver models/${PT_DIR}/${NET}/faster_rcnn_end2end/solver.prototxt \
  --weights data/imagenet_models/${NET}.v2.caffemodel \
  --imdb ${TRAIN_IMDB} \
  --iters ${ITERS} \
  --cfg experiments/cfgs/faster_rcnn_end2end.yml \
  ${EXTRA_ARGS}

set +x
NET_FINAL=`grep -B 1 "done solving" ${LOG} | grep "Wrote snapshot" | awk '{print $4}'`   
set -x

time ./tools/test_net.py --gpu ${GPU_ID} \    #测试过程
  --def models/${PT_DIR}/${NET}/faster_rcnn_end2end/test.prototxt \
  --net ${NET_FINAL} \
  --imdb ${TEST_IMDB} \
  --cfg experiments/cfgs/faster_rcnn_end2end.yml \
  ${EXTRA_ARGS}

在 PyTorch 中使用 `faster_rcnn_resnet50_fpn` 模型,可以按照以下步骤进行: 1. 安装 PyTorch 和 TorchVision 库(如果未安装的话)。 2. 导入必要的库和模块: ```python import torch import torchvision from torchvision.models.detection.faster_rcnn import FastRCNNPredictor ``` 3. 加载预训练模型 `faster_rcnn_resnet50_fpn`: ```python model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True) ``` 4. 修改模型的分类器,将其调整为适合你的任务。由于 `faster_rcnn_resnet50_fpn` 是一个目标检测模型,它的分类器通常是用来检测物体类别的。如果你的任务不需要检测物体类别,可以将分类器替换为一个只有一个输出的线性层: ```python num_classes = 1 # 只检测一个类别 in_features = model.roi_heads.box_predictor.cls_score.in_features model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes) ``` 5. 将模型转换为训练模式,并将其移动到所选设备(如GPU)上: ```python device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') model.to(device) model.train() # 转换为训练模式 ``` 6. 训练模型,可以使用自己的数据集来训练模型,或者使用 TorchVision 中的数据集,如 Coco 或 Pascal VOC 数据集。 7. 在测试阶段,可以使用以下代码来检测图像中的物体: ```python # 定义图像 image = Image.open('test.jpg') # 转换为Tensor,并将其移动到设备上 image_tensor = torchvision.transforms.functional.to_tensor(image) image_tensor = image_tensor.to(device) # 执行推理 model.eval() with torch.no_grad(): outputs = model([image_tensor]) # 处理输出 boxes = outputs[0]['boxes'].cpu().numpy() # 物体框 scores = outputs[0]['scores'].cpu().numpy() # 物体分数 ``` 需要注意的是,`faster_rcnn_resnet50_fpn` 是一个较大的模型,需要较高的计算资源和训练时间。在训练和测试时,建议使用GPU来加速计算。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值