最短路径算法—Bellman-Ford模板

本文详细介绍Bellman-Ford算法的实现原理及代码实现过程,该算法能够有效地解决带负权边的最短路径问题,并能检测是否存在负权回路。文章通过具体的代码示例解释了如何使用该算法进行最短路径计算及其路径反向和正向输出。
摘要由CSDN通过智能技术生成
//Bellman_Ford算法(可判断有无权为负的回路)
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <map>
#define maxn 1005
#define inf 0x3f3f3f3f
using namespace std;


map<int, int>mp;
int dist[maxn];
int pre[maxn];


struct Edge
{
    int u, v, cost;
}edge[maxn];


int Bellman_Ford(int nodenum, int edgenum, int orig)
{
    for(int i=1; i<=nodenum; i++)
        dist[i] = i==orig?0:inf;
    pre[orig] = orig;
    for(int i=1; i<nodenum; i++)
        for(int j=1; j<=edgenum; j++)
        {
            if(dist[edge[j].v]>dist[edge[j].u] + edge[j].cost)
            {
                dist[edge[j].v] = dist[edge[j].u] + edge[j].cost;
                pre[edge[j].v] = edge[j].u;
            }
        }
    int res = 1;
    for(int j=1; j<=edgenum; j++)
        {
            if(dist[edge[j].v]>dist[edge[j].u] + edge[j].cost)
            {
                res = 0;
                break;
            }
        }
    return res;
}


//反向输出路径
void f_path(int root)
{
    while(root!=pre[root])
    {
        printf("%d, ", root);
        root = pre[root];
    }


    if(root==pre[root])
        printf(", %d", root);
}


//正向输出路径
void z_path(int root)
{
    int path[maxn];
    int k = 0;
    while(root!=pre[root])
    {
        path[k++] = root;
        root = pre[root];
    }
    path[k++] = root;
    for(int i=0; i<k; i++)
        printf("%d, ",path[k-i-1]);
    printf("\n\n");
}


int main()
{
    int nodenum, edgenum, orig;
    while(scanf("%d%d%d", &nodenum, &edgenum, &orig)!=EOF)
    {
        //无向图,可重边,点u->v的权值存在mp[u*maxn+v]中, 结构体edge中的cost可去掉
        /*mp.clear();
        int k=0;
        for(int i=1; i<=edgenum; i++)
            {
                int u, v, cost;
                scanf("%d%d%d", &u, &v, &cost);
                if(mp[u*maxn+v])
                    {
                        mp[v*maxn+u] = mp[u*maxn+v] = min(mp[u*maxn + v], cost);
                    }
                else
                {
                    edge[k++].u = u;
                    edge[k-1].v = v;
                    edge[k++].u = v;
                    edge[k-1].v = u;
                    mp[v*maxn+u] = mp[u*maxn+v] = cost;
                }
            }
        */
        //有向图,且没有重边
        for(int i=1; i<=edgenum; i++)
            scanf("%d%d%d", &edge[i].u, &edge[i].v, &edge[i].cost);
        if(Bellman_Ford(nodenum, edgenum, orig))
        {
            for(int i=1; i<=nodenum; i++)
            {
                printf("%d->%d的最短路长度:%d\n", orig, i, dist[i]);
                printf("反向路径是:");
                f_path(i);
                printf("\n正向路径是:");
                z_path(i);
            }
        }
        else
            printf("存在负环\n");
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值