LR

LR(Logistic Regression)

理论基础

Logistic分布

分布函数,对数几率
其实,LR就是一个线性分类的模型,与线性回归不同的是:LR将线性方程输出的很大范围的数压缩到了[0,1]区间上。即:LR就是一个被logistic方程归一化后的线性回归。

LR参数求解过程

极大似然估计

1.在这里,最大化对数似然函数与最小化对数似然损失函数其实是等价的;
2.对于每一个样本出现概率可得,此时似然函数即为n个样本概率的积(此时假设每个样本是独立的),取对数,求偏导,得到的式子无法解析求解,需用最优化方法,这里使用“梯度下降法”

常见问题

1.与其他模型的比较

与Linear Regression的区别:线性回归在整个实数域敏感度一致,逻辑回归在z=0时十分敏感,在z>>0或z<<0处都不敏感
LR与SVM比较
相同点:

  • 若不考虑核函数,LR与SVM都是线性分类算法,分类决策面都是线性的,这里要说明LR也是可以使用核函数的,但通常会在SVM使用但不在LR使用
  • LR和SVM都是判别模型
  • 在工业界和学术界都广为人知且应用广泛

不同点:

  • 本质上是loss function不同,不同的loss function代表了不同的假设前提。LR基于概率理论,假设样本为1的概率可以用sigmoid函数来表示;SVM基于几何间隔最大化原理,认为存在最大几何间隔的分类面为最优分类面。
  • SVM只考虑局部的边界线附近的点,而LR考虑全局(远离的点对边界线的确定也起作用,虽然作用会相对小一些),因此,线性SVM不直接依赖与数据分布,分裂平面不受一类点影响;LR则受所有数据点的影响,如果数据不同类别严重不平衡,一般需要先对数据做balancing
  • 在解决非线性问题时,SVM采用核函数的机制,LR不是。SVM只有少数几个样本需要参与核计算(即kernal machiine解的系数是稀疏的),LR若使用核函数,则每个样本点都必须参与核计算,计算复杂度过高。
  • 线性SVM(基于距离)依赖数据表达的距离测度,所以需要对数据先做normalization,LR(基于概率)不受影响
  • SVM的损失函数自带正则,所以SVM是结构风险最小化;LR必须另外在损失函数上添加正则项

2.分别从MLE和最小化损失函数来理解LR的损失函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值