Graduate Admission


It is said that in 2013, there were about 100 graduate schools ready to proceed over 40,000 applications in Zhejiang Province. It would help a lot if you could write a program to automate the admission procedure.
Each applicant will have to provide two grades: the national entrance exam grade GE , and the interview grade GI . The final grade of an applicant is (GE + GI ) / 2. The admission rules are:

The applicants are ranked according to their final grades, and will be admitted one by one from the top of the rank list.
If there is a tied final grade, the applicants will be ranked according to their national entrance exam grade GE. If still tied, their ranks must be the same.
Each applicant may have K choices and the admission will be done according to his/her choices: if according to the rank list, it is one's turn to be admitted; and if the quota of one's most preferred shcool is not exceeded, then one will be admitted to this school, or one's other choices will be considered one by one in order. If one gets rejected by all of preferred schools, then this unfortunate applicant will be rejected.
If there is a tied rank, and if the corresponding applicants are applying to the same school, then that school must admit all the applicants with the same rank, even if its quota will be exceeded. 


Each input file contains one test case.  Each case starts with a line containing three positive integers: N (<=40,000), the total number of applicants; M (<=100), the total number of graduate schools; and K (<=5), the number of choices an applicant may have.
In the next line, separated by a space, there are M positive integers.  The i-th integer is the quota of the i-th graduate school respectively.
Then N lines follow, each contains 2+K integers separated by a space.  The first 2 integers are the applicant's GE and GI, respectively.  The next K integers represent the preferred schools.  For the sake of simplicity, we assume that the schools are numbered from 0 to M-1, and the applicants are numbered from 0 to N-1.


For each test case you should output the admission results for all the graduate schools.  The results of each school must occupy a line, which contains the applicants' numbers that school admits.  The numbers must be in increasing order and be separated by a space.  There must be no extra space at the end of each line.  If no applicant is admitted by a school, you must output an empty line correspondingly.


11 6 3
2 1 2 2 2 3
100 100 0 1 2
60 60 2 3 5
100 90 0 3 4
90 100 1 2 0
90 90 5 1 3
80 90 1 0 2
80 80 0 1 2
80 80 0 1 2
80 70 1 3 2
70 80 1 2 3
100 100 0 2 4


0 10
5 6 7
2 8

1 4


#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define MAX 40002
struct student{
    int Ge,Gi,sum;
    int r,stuID; //排名,stu按成绩排序前的考号(编号)
    int aim[6];  //k 个志愿学校
struct school{
    int quota;    //该校招生人数总额
    int num;      //当前实际招生人数
    int id[MAX];  //招收的考生排名后的编号
    int lastAdimnt; //最后一个被招收的考生编号
bool cmp(student a,student b){
        return a.sum>b.sum;
    return a.Ge>b.Ge;
bool cmpID(int a,int b){
    return stu[a].stuID<stu[b].stuID;
int main(){
    int n,m,k,i,j;
    scanf("%d %d %d",&n,&m,&k);
        scanf("%d %d",&stu[i].Ge,&stu[i].Gi);

            int cho=stu[i].aim[j];
            int num=sch[cho].num;
            int last=sch[cho].lastAdimnt;

                    printf(" ");


    return 0;


Time to Graduate


DescriptionnnA prospective CS student is investigating how many semesters it will take to graduate from a variety of different universities. Each university provides a list of required courses, their prerequisites, and when each course is offered. Given this information, determine the minimum number of semesters to graduate. nnConsider the following example. A student is required to take 4 courses, mt42, cs123, cs456, and cs789. mt42 is only offered in the fall semester and has no prerequisites. Similarly, cs123 is only offered in the spring semester and has no prerequisites. cs456 is only offered in the spring semester and has both cs123 and mt42 as prerequisites. Finally, cs789 is offered in both fall and spring and has cs456 as its only prerequisite. The shortest time to graduate is 5 semesters, by taking mt42 in the fall, cs123 in the next spring, cs456 the following spring (since it is not offered in the fall) and finally cs789 the following fall. nnFor this problem, there are only two semesters, fall and spring. Always start counting semesters from the fall. nnIn addition to the fall/spring scheduling issues, there is one slight complication. In order to keep the dormitories full, each university limits the number of courses that can be taken in any semester. This limit appears as part of the input data. The third example below illustrates this issue.nInputnnThere are one to twenty-five data sets, followed by a final line containing only the integers -1 -1. A data set starts with a line containing two positive integers n, 1 <= n <= 12, which is the number of courses in this data set and m, 2 <= m <= 6, which is the maximum number of courses that can be taken in any single semester. The next line contains the n course identifiers. Each is a 1-5 character string from the set a-z, 0-9. Following the course identifiers is the individual course information. This consists of n lines, one line for each course, containing the course identifier, semester offered ('F'=Fall, 'S'=Spring, 'B'=Both semesters), the number of prerequisite courses, p, 0 <= p <= 5, and finally p prerequisite course identifiers. The first example data set below corresponds to the problem described above. nOutputnnThe output contains one line for each data set, formatted as shown in the sample output.nSample Inputnn4 6ncs123 mt42 cs456 cs789nmt42 F 0ncs123 S 0ncs456 S 2 cs123 mt42ncs789 B 1 cs456n3 6nmath1 comp2 comp3ncomp3 S 1 comp2nmath1 S 0ncomp2 F 1 math1n4 3nm10 m20 c33 c44nm10 B 0nm20 B 0nc33 B 0nc44 B 0n-1 -1nSample OutputnnThe minimum number of semesters required to graduate is 5.nThe minimum number of semesters required to graduate is 4.nThe minimum number of semesters required to graduate is 2.