Pytorch使用nn.DataParallel失效:只能使用单GPU / 无法使用多GPU训练

本文介绍了在PyTorch中使用DataParallel进行多GPU并行计算时可能会遇到的问题及其解决方案。当自定义了Model的forward方法或者使用了非默认的前向传播方法时,DataParallel可能无法正常工作。解决方案包括确保BatchSize大于GPU数量,以及正确调用内部的module。如果必须使用自定义方法,可以创建一个独立类来调用默认的forward方法。通过这种方式,可以解决DataParallel无效的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

官方文档: torch.nn.DataParallel

DataParallel 在 Module 级别实现并行计算,关于使用了 DataParallel 而实际训练时不起作用(只能使用单 GPU)的可能原因

1. 设置的 Batch Size 小于可用的 GPU 数量,这一点在官方文档中也有说明:Batch Size 需要保证大于使用的 GPU 数量。

2. 未使用 nn.Module 的默认 forward() 方法执行前向传播

一般情况下,定义的 Model 继承自 torch.nn.Module,在进行前向传播时,调用 model.forward() 函数,能够进行多 GPU 并行训练,一个简单的例子:

# 网络模型定义
class Model(torch.nn.Module):
	def __init__(self):
		super(Model, self).__init__()
		...
	def forward(self, x):
		x = ...
		return x
	
model = Model()   # 初始化网络模型
model = nn.DataParallel(model)   # 指定多GPU
model = model.cuda()
for epoch in range(n_epoch):   #  网络训练过程
	...
	outputs = model(input)
	...

此时,执行 model(input) 调用了默认的 forward() 方法,能够正常进行多 GPU 并行训练。

但是,如果使用自定义 Model 和自定义的方法,则无法进行多 GPU 的并行计算,比如像下面的模型定义:

# 网络模型定义
class Model(torch.nn.Module):
	def __init__(self):
		super(Model, self).__init__()
		...
	def my_forward(self, x): # 自定义forward方法
		x = self.forward(x)
		return x
	def forward(self, x):
		x = ...
		return x

model = Model()   # 初始化网络模型
model = nn.DataParallel(model)   # 指定多GPU
model = model.cuda()
for epoch in range(n_epoch):   #  网络训练过程
	...
	outputs = model.my_forward(input)  # 使用自定义的forward方法
	...

在使用了 model = nn.DataParallel(model) 之后,可以发现 model 变成了 DataParallel 类型的变量,其中 module 变量才是真正的网络模型,可以通过 model.module 获取。

此时,如果调用自定义的方法 model.my_forward(input),会报错:

'DataParallel' object has no attribute 'my_forward'

要解决这个 bug 很简单,只需要利用 model = model.module 把 model 从 DataParallel 里拎出来即可:

if isinstance(model, torch.nn.DataParallel):
    model = model.module

这样做虽然能够正常训练,但同时也意味着无法使用 DataParallel 进行多 GPU 并行训练,也就出现了使用了 DataParallel,但无效的问题。

那么,如果 my_forward() 方法非定义不可呢?尝试曲线救国,将自定义方法单独拎出来自成一类,然后在该类中调用默认的 forward() 方法。举个例子:

class Model(torch.nn.Module):
	def __init__(self):
		super(Model, self).__init__()
		...
	def forward(self, x):
		x = ...
		return x

# 新定义类
class MyForward(torch.nn.Module):
    def __init__(self):
        super().__init__()
        ...
    def my_forward(self, x):
    	...
        x = model(x)
        return x

model = Model()   # 初始化网络模型
my_forward = MyForward()   # 初始化新定义类
model = nn.DataParallel(model)
model = model.cuda()
for epoch in range(n_epoch):
	...
	outputs = my_forward(input)
	...

至此,问题解决 ~

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不吃饭就会放大招

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值