官方文档: torch.nn.DataParallel
DataParallel 在 Module 级别实现并行计算,关于使用了 DataParallel 而实际训练时不起作用(只能使用单 GPU)的可能原因:
1. 设置的 Batch Size 小于可用的 GPU 数量,这一点在官方文档中也有说明:Batch Size
需要保证大于使用的 GPU 数量。
2. 未使用 nn.Module 的默认 forward() 方法执行前向传播。
一般情况下,定义的 Model 继承自 torch.nn.Module
,在进行前向传播时,调用 model.forward()
函数,能够进行多 GPU 并行训练,一个简单的例子:
# 网络模型定义
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
...
def forward(self, x):
x = ...
return x
model = Model() # 初始化网络模型
model = nn.DataParallel(model) # 指定多GPU
model = model.cuda()
for epoch in range(n_epoch): # 网络训练过程
...
outputs = model(input)
...
此时,执行 model(input)
调用了默认的 forward()
方法,能够正常进行多 GPU 并行训练。
但是,如果使用自定义 Model 和自定义的方法,则无法进行多 GPU 的并行计算,比如像下面的模型定义:
# 网络模型定义
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
...
def my_forward(self, x): # 自定义forward方法
x = self.forward(x)
return x
def forward(self, x):
x = ...
return x
model = Model() # 初始化网络模型
model = nn.DataParallel(model) # 指定多GPU
model = model.cuda()
for epoch in range(n_epoch): # 网络训练过程
...
outputs = model.my_forward(input) # 使用自定义的forward方法
...
在使用了 model = nn.DataParallel(model)
之后,可以发现 model 变成了 DataParallel 类型的变量,其中 module
变量才是真正的网络模型,可以通过 model.module
获取。
此时,如果调用自定义的方法 model.my_forward(input)
,会报错:
'DataParallel' object has no attribute 'my_forward'
要解决这个 bug 很简单,只需要利用 model = model.module
把 model 从 DataParallel 里拎出来即可:
if isinstance(model, torch.nn.DataParallel):
model = model.module
这样做虽然能够正常训练,但同时也意味着无法使用 DataParallel 进行多 GPU 并行训练,也就出现了使用了 DataParallel,但无效的问题。
那么,如果 my_forward()
方法非定义不可呢?尝试曲线救国,将自定义方法单独拎出来自成一类,然后在该类中调用默认的 forward()
方法。举个例子:
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
...
def forward(self, x):
x = ...
return x
# 新定义类
class MyForward(torch.nn.Module):
def __init__(self):
super().__init__()
...
def my_forward(self, x):
...
x = model(x)
return x
model = Model() # 初始化网络模型
my_forward = MyForward() # 初始化新定义类
model = nn.DataParallel(model)
model = model.cuda()
for epoch in range(n_epoch):
...
outputs = my_forward(input)
...
至此,问题解决 ~