Coursera Machine Learning 第十周 quiz Large Scale Machine Learning



Large Scale Machine Learning

5 个问题
1
point
1。

Suppose you are training a logistic regression classifier using stochastic gradient descent. You find that the cost (say,  cost(θ,(x(i),y(i))) , averaged over the last 500 examples), plotted as a function of the number of iterations, is slowly increasing over time. Which of the following changes are likely to help?

Try averaging the cost over a larger number of examples (say 1000 examples instead of 500) in the plot.

Try using a larger learning rate  α .

This is not an issue, as we expect this to occur with stochastic gradient descent.

Try using a smaller learning rate  α .

1
point
2。

Which of the following statements about stochastic gradient

descent are true? Check all that apply.

One of the advantages of stochastic gradient descent is that it uses parallelization and thus runs much faster than batch gradient descent.

Before running stochastic gradient descent, you should randomly shuffle (reorder) the training set.

In order to make sure stochastic gradient descent is converging, we typically compute  Jtrain(θ)  after each iteration (and plot it) in order to make sure that the cost function is generally decreasing.

If you have a huge training set, then stochastic gradient descent may be much faster than batch gradient descent.

1
point
3。

Which of the following statements about online learning are true? Check all that apply.

One of the advantages of online learning is that if the function we're modeling changes over time (such as if we are modeling the probability of users clicking on different URLs, and user tastes/preferences are changing over time), the online learning algorithm will automatically adapt to these changes.

Online learning algorithms are usually best suited to problems were we have a continuous/non-stop stream of data that we want to learn from.

Online learning algorithms are most appropriate when we have a fixed training set of size  m  that we want to train on.

When using online learning, you must save every new training example you get, as you will need to reuse past examples to re-train the model even after you get new training examples in the future.

1
point
4。

Assuming that you have a very large training set, which of the

following algorithms do you think can be parallelized using

map-reduce and splitting the training set across different

machines? Check all that apply.

Computing the average of all the features in your training set  μ=1mmi=1x(i) (say in order to perform mean normalization).

Logistic regression trained using batch gradient descent.

Logistic regression trained using stochastic gradient descent.

Linear regression trained using stochastic gradient descent.

1
point
5。

Which of the following statements about map-reduce are true? Check all that apply.

When using map-reduce with gradient descent, we usually use a single machine that accumulates the gradients from each of the map-reduce machines, in order to compute the parameter update for that iteration.

Because of network latency and other overhead associated with map-reduce, if we run map-reduce using  N  computers, we might get less than an  N -fold speedup compared to using 1 computer.

If we run map-reduce using  N  computers, then we will always get at least an  N -fold speedup compared to using 1 computer.

If you have only 1 computer with 1 computing core, then map-reduce is unlikely to help.



5题我选的是BD  是错误的

1
point
1。

Suppose you are training a logistic regression classifier using stochastic gradient descent. You find that the cost (say,  cost(θ,(x(i),y(i))) , averaged over the last 500 examples), plotted as a function of the number of iterations, is slowly increasing over time. Which of the following changes are likely to help?

Try averaging the cost over a larger number of examples (say 1000 examples instead of 500) in the plot.

Try using a larger learning rate  α .

This is not an issue, as we expect this to occur with stochastic gradient descent.

Try using a smaller learning rate  α .

1
point
2。

Which of the following statements about stochastic gradient

descent are true? Check all that apply.

One of the advantages of stochastic gradient descent is that it uses parallelization and thus runs much faster than batch gradient descent.

Before running stochastic gradient descent, you should randomly shuffle (reorder) the training set.

In order to make sure stochastic gradient descent is converging, we typically compute  Jtrain(θ)  after each iteration (and plot it) in order to make sure that the cost function is generally decreasing.

If you have a huge training set, then stochastic gradient descent may be much faster than batch gradient descent.

1
point
3。

Which of the following statements about online learning are true? Check all that apply.

One of the advantages of online learning is that if the function we're modeling changes over time (such as if we are modeling the probability of users clicking on different URLs, and user tastes/preferences are changing over time), the online learning algorithm will automatically adapt to these changes.

Online learning algorithms are usually best suited to problems were we have a continuous/non-stop stream of data that we want to learn from.

Online learning algorithms are most appropriate when we have a fixed training set of size  m  that we want to train on.

When using online learning, you must save every new training example you get, as you will need to reuse past examples to re-train the model even after you get new training examples in the future.

1
point
4。

Assuming that you have a very large training set, which of the

following algorithms do you think can be parallelized using

map-reduce and splitting the training set across different

machines? Check all that apply.

Computing the average of all the features in your training set  μ=1mmi=1x(i) (say in order to perform mean normalization).

Logistic regression trained using batch gradient descent.

Logistic regression trained using stochastic gradient descent.

Linear regression trained using stochastic gradient descent.

1
point
5。

Which of the following statements about map-reduce are true? Check all that apply.

When using map-reduce with gradient descent, we usually use a single machine that accumulates the gradients from each of the map-reduce machines, in order to compute the parameter update for that iteration.

Because of network latency and other overhead associated with map-reduce, if we run map-reduce using  N  computers, we might get less than an  N -fold speedup compared to using 1 computer.

If we run map-reduce using  N  computers, then we will always get at least an  N -fold speedup compared to using 1 computer.

If you have only 1 computer with 1 computing core, then map-reduce is unlikely to help.

我了解不是我自己完成的作业将永远不会通过该课程且我的 Coursera 帐号会被取消激活。 
Coursera机器学习是由斯坦福大学教授Andrew Ng主讲的一门在线课程,旨在向学习者介绍机器学习的基本概念、算法和应用。该课程涵盖了监督学习、无监督学习、深度学习等多个方面,通过理论讲解和实践编程作业,帮助学习者掌握机器学习的基本原理和实践技能。该课程是Coursera平台上最受欢迎的课程之一,也是机器学习领域入门的重要资源之一。 ### 回答2: Coursera机器学习是由斯坦福大学Andrew Ng教授设计并教授的在线课程。这门课程被认为是公认的机器学习入门教材之一,也是Coursera平台最受欢迎的课程之一。 这门课程涵盖了机器学习领域中最基础的知识和技术,包括监督学习、无监督学习以及神经网络等。学生可以通过该课程了解到如何采集和处理数据、如何训练模型、如何评估模型的性能等。此外,课程还涉及到机器学习中一些实用的技术,如正则化、梯度下降等。 该课程受到了全球范围内的认可和青睐,许多学生、工程师、数据科学家等都受益于该课程。由于该课程的知识点全面、深入浅出、容易理解和学习,在业内和学术界都广受赞誉,拥有较高的知名度和价值。 总之,Coursera机器学习是一门非常好的课程,对于那些对机器学习感兴趣的人来说,它是一个不可错过的机会。课程教材内容丰富、难度适中,且教学相对轻松愉悦,难怪在学习资源上产生了广泛的影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值