Spark中使用RDD算子GroupBy做词频统计的方法

测试文件及环境

测试文件在本地D://tmp/spark.txt,Spark采用Local模式运行,Spark版本3.2.0,Scala版本2.12,集成idea开发环境。

hello
world
java
world
java
java

实验代码

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

object GroupBy {
  def main(args: Array[String]): Unit = {
  	// 创建Spark执行环境
    val sparkConf: SparkConf =
      new SparkConf().setMaster("local").setAppName("GroupBy")
    // 新建会话
    val sc = new SparkContext(sparkConf)
	// 读取本地文件到RDD
    val rdd: RDD[String] = sc.textFile("D://tmp/spark.txt")
    // 对rdd做map映射,返回(hello,1)...
    val rdd2: RDD[(String, Int)] = rdd.map(v => {
      val arr: Array[String] = v.split("\t")
      (arr(0), 1)
    })
	// 打印map映射结果
    rdd2.foreach(v=>println(v))

	// 对rdd2进行groupBy操作
    val rdd3: RDD[(String, Iterable[(String, Int)])] = rdd2.groupBy(v => v._1)
    // 遍历打印最终结果
    rdd3.map(v => (v._1, v._2.size)).foreach(v => println(v))
	//结束Spark会话
    sc.stop()
  }
}

实验结果

打印map映射结果

(hello,1)
(world,1)
(java,1)
(world,1)
(java,1)
(java,1)
(hello,1)
(java,3)
(world,2)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序终结者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值