计算海洋声学---射线理论注解

本文详细介绍了海洋声学中的射线理论,从时域波动方程出发,推导出射线方程,解析了高频近似、奥高定理,并对相关概念进行了注解。通过理解散度和奥高定理,揭示了声能沿声线传播的物理意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.引言

本文主要给出在推导射线模型中的一些注解,文中先给出了射线方程推导的简要过程,再给出推导过程中的注解。

2.推导

首先推导的起点从时域波动方程开始:
∇ 2 p − 1 c 2 ∂ 2 p ∂ t 2 = 0 − − − − − − ( 1 ) \nabla^{2} p-\frac{1}{c^{2}} \frac{\partial ^{2} p }{\partial t^{2}}= 0 ------(1) 2pc21t22p=0(1)
这是典型的时域波动方程,其有如下解的形式:
p ( x , y , z , t ) = A ( x , y , z ) e j [ ω t − k 0 ξ ( x , y , z ) ] − − − − − − ( 2 ) p(x,y,z,t) = A(x,y,z)e^{j[\omega t-k_0\xi(x,y,z)]}------(2) p(x,y,z,t)=A(x,y,z)ej[ωtk0ξ(x,y,z)](2)
这里表示在时域笛卡尔坐标系求解, p ( x , y , z , t ) p(x,y,z,t) p(x,y,z,t)为声压的时域形式, A A A为幅值, k 0 k_0 k0为波数, ξ ( x , y , z ) \xi(x,y,z) ξ(x,y,z)为长度量纲。
将形式解带入波动方程,并利用高频近似可得到如下两个基本方程:
强度方程:
2 ∇ A A ∇ ξ + ∇ 2 ξ = 0 − − − − − − ( 3 ) \frac{2\nabla A}{A} \nabla \xi + \nabla^{2}\xi = 0------(3) A2Aξ+

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值