【学习笔记(五):《动手学深度学习 Pytorch版》微积分】

文章介绍了导数和微分在深度学习中的关键作用,特别是在优化算法中的应用。以函数f(x)=3x^2-4x为例,解释了导数的计算方法,并提到使用matplotlib进行可视化。同时,文章还讨论了多元函数的偏导数计算以及梯度和链式法则的重要性。
摘要由CSDN通过智能技术生成

1.导数和微分

导数的计算,这是几乎所有深度学习优化算法的关键步骤,在深度学习我们通常选择对于模型参数可微的损失函数
定义一个函数f(x) = 3 * x^2 - 4 *x ,输入和输出都是标量,如果导数存在,极限定义如下:
f ′ ( x ) = lim ⁡ h → 0 f ( x + h ) − f ( x ) h f^{'}(x) = \lim_{h \to 0 } \frac{f(x+h)-f(x)}{h} f(x)=h0limhf(x+h)f(x)
令x = 1,并让h接近0,极限的结果会接近2
在这里插入图片描述
对导数的这种解释进行可视化,我们将使用matplotlib,是一个Python中流行的绘图库,

2. 偏导数

对于多元函数求偏导数,设 y = f ( x 1 , x 2 , . . . , x n ) y = f(x_1,x_2,...,x_n) y=f(x1,x2,...,xn)是一个具有n个变量的函数,y关于第个参数的偏导数(partial derivative)为
∂ y ∂ x = lim ⁡ h → 0 f ( x 1 , . . . , x i − 1 , x i + h , x i + 1 , . . . x n ) − f ( x 1 , . . . x i , . . . x n ) h \frac{\partial y}{\partial x}=\lim_{h \to 0} \frac{f(x_1,...,x_{i-1},x_{i}+h,x_{i+1},...x_n) - f(x_1,...x_i,...x_n)} {h} xy=h0limhf(x1,...,xi1,xi+h,xi+1,...xn)f(x1,...xi,...xn)
若计算 ∂ y ∂ x i \frac{\partial y}{\partial x_i} xiy,则可以将 x 1 , . . . , x i − 1 , x i + 1 , . . . , x n x_1,...,x_{i-1},x_{i+1},...,x_n x1,...,xi1,xi+1,...,xn看作常数,计算 y y y关于 x i x_i xi的导数。

3. 梯度

4. 链式法则

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值