基础:
锁提供如下方法:
1.Lock.acquire(blocking=True, timeout=-1):请求对 Lock 或 RLock 加锁,其中 timeout 参数指定加锁多少秒。
Lock 和 RLock 的区别如下:
- threading.Lock:它是一个基本的锁对象,每次只能锁定一次,其余的锁请求,需等待锁释放后才能获取。
- threading.RLock:它代表可重入锁(Reentrant Lock)。对于可重入锁,在同一个线程中可以对它进行多次锁定,也可以多次释放。如果使用 RLock,那么 acquire() 和 release() 方法必须成对出现。如果调用了 n 次 acquire() 加锁,则必须调用 n 次 release() 才能释放锁。
2.Lock.release()
3.threading.Lock() 加载线程的锁对象,是一个基本的锁对象,一次只能一个锁定,其余锁请求,需等待锁释放后才能获取4.threading.RLock() 多重锁,在同一线程中可用被多次acquire。如果使用RLock,那么acquire和release必须成对出现,
调用了n次acquire锁请求,则必须调用n次的release才能在线程中释放锁对象
直奔主题测试代码案例:
lock和Rlock内部源码实现方式不一样,具体可以查看源码。再说测试部分(环境windows和vscode):
import threading,time
# run1第二道锁
def run1():
print("grab the first part data")
lock.acquire()
global num
num +=1
lock.release()
return num
# run2第三道锁
def run2():
print("grab the second part data")
lock.acquire()
global num2
num2+=1
lock.release()
return num2
# run3相当于第一道锁
def run3():
# 获取一把锁
lock.acquire()
res = run1()
print('--------between run1 and run2-----')
time.sleep(0.3)
res2 = run2()
# 释放一把锁
lock.release()
print(res,res2)
print(threading.active_count())
# 生成两个变量
num,num2 = 0,0
# 生成递归锁实例
lock = threading.Lock()
lock2= threading.Lock()
lock3 = threading.Lock()
# 循环开启10个线程
for i in range(10):
print(threading.active_count())
t = threading.Thread(target=run3)
t.start()
t.join()
# 如过大于1个线程就成立,注意IDE线程可能不一样
while threading.active_count() != 7:
print('----all threads over---')
print(threading.active_count())
# 打印当前还有多少个线程
# print(threading.active_count())
else:
print('----all threads done---')
print(num,num2)
print(threading.active_count())
从上面的测试用例可以得到,程序卡在run1()函数lock.acquire()里面了。所以可以得到一个结论:锁是一个全局对象,所里面不要嵌套锁。
解决办法:low一点的,用多少锁定义几个锁,区分开:
lock = threading.Lock()
lock2= threading.Lock()
lock3 = threading.Lock()
或者直接使用python为我们准备的多个嵌套threading.RLock()。这里就不贴代码,只要将上面lock = threading.RLock()修改一下就可以了。
这里还有一个注意点:
# 如过大于1个线程就成立,注意IDE线程可能不一样
while threading.active_count() != 7: #注意点
print('----all threads over---')
print(threading.active_count())
# 打印当前还有多少个线程
# print(threading.active_count())
else:
print('----all threads done---')
print(num,num2)
print(threading.active_count())
这个线程当前数,在不同的IDE编译环境下不一样。有的IDE只是1,相当于只有一个main()主函数(提示:主函数其实也是一个线程)
————————————————————————————————————————————————————————
以下是在其他地方看到拓展案例,也会造成死锁:
import threading
import time
class A:
def __init__(self):
self.lock = threading.RLock()
def foo(self, b):
try:
self.lock.acquire()
print("当前线程名: " + threading.current_thread().name\
+ " 进入了A实例的foo()方法" ) # ①
time.sleep(0.2)
print("当前线程名: " + threading.current_thread().name\
+ " 企图调用B实例的last()方法") # ③
b.last()
finally:
self.lock.release()
def last(self):
try:
self.lock.acquire()
print("进入了A类的last()方法内部")
finally:
self.lock.release()
class B:
def __init__(self):
self.lock = threading.RLock()
def bar(self, a):
try:
self.lock.acquire()
print("当前线程名: " + threading.current_thread().name\
+ " 进入了B实例的bar()方法" ) # ②
time.sleep(0.2)
print("当前线程名: " + threading.current_thread().name\
+ " 企图调用A实例的last()方法") # ④
a.last()
finally:
self.lock.release()
def last(self):
try:
self.lock.acquire()
print("进入了B类的last()方法内部")
finally:
self.lock.release()
a = A()
b = B()
def init():
threading.current_thread().name = "主线程"
# 调用a对象的foo()方法
a.foo(b)
print("进入了主线程之后")
def action():
threading.current_thread().name = "副线程"
# 调用b对象的bar()方法
b.bar(a)
print("进入了副线程之后")
# 以action为target启动新线程
threading.Thread(target=action).start()
# 调用init()函数
init()
至此,就出现了主线程保持着 A 对象的锁,等待对 B 对象加锁,而副线程保持着 B对象的锁,等待对 A 对象加锁,两个线程互相等待对方先释放锁,所以就出现了死锁。
死锁是不应该在程序中出现的,在编写程序时应该尽量避免出现死锁。下面有几种常见的方式用来解决死锁问题:
- 避免多次锁定。尽量避免同一个线程对多个 Lock 进行锁定。例如上面的死锁程序,主线程要对 A、B 两个对象的 Lock 进行锁定,副线程也要对 A、B 两个对象的 Lock 进行锁定,这就埋下了导致死锁的隐患。
- 具有相同的加锁顺序。如果多个线程需要对多个 Lock 进行锁定,则应该保证它们以相同的顺序请求加锁。比如上面的死锁程序,主线程先对 A 对象的 Lock 加锁,再对 B 对象的 Lock 加锁;而副线程则先对 B 对象的 Lock 加锁,再对 A 对象的 Lock 加锁。这种加锁顺序很容易形成嵌套锁定,进而导致死锁。如果让主线程、副线程按照相同的顺序加锁,就可以避免这个问题。
- 使用定时锁。程序在调用 acquire() 方法加锁时可指定 timeout 参数,该参数指定超过 timeout 秒后会自动释放对 Lock 的锁定,这样就可以解开死锁了。
- 死锁检测。死锁检测是一种依靠算法机制来实现的死锁预防机制,它主要是针对那些不可能实现按序加锁,也不能使用定时锁的场景的。