【Interview】GoogLeNet、ResNet、ShuffleNet、MobileNet 文字版

这篇博客详细介绍了多个深度学习网络架构,包括GoogLeNet的Inception模块和进化,ResNet的残差连接,ShuffleNet的通道shuffle操作,以及MobileNet系列的深度可分离卷积。文章还提到了SENet的squeeze-and-excitation机制和优化的激活函数,以及DPN的高阶RNN结构。最后,探讨了ShuffleNet V2中关于FLOPs和MAC的优化策略。
摘要由CSDN通过智能技术生成
  • GoogLeNet(Inception-v1)
    相比AlexNet和VGG,出现了多支路,引入了1×1卷积帮助减少网络计算量

  • Inception-v2
    引入Batch Normalization(BN);5×5卷积使用两个3×3卷积代替

  • Inception-v3
    非对称卷积(n×n卷积分割为1×n和n×1两个卷积);
    new pooling (为了防止信息丢失且不增加计算量,把串联的pooling conv 改为并行的conv、pool然后concat)
    Label smooth

  • Inception-v4
    引入ResNet的shortcut思想

  • Xception
    Separable Convolution
    normal conv (3×3,256)
    (1×1,256)
    (3×3,1)

  • ResNeXt
    引入新维度cardinality

    256d in-(256,1×1,64)-(64,3×3,64)-(64,1×1,256)-sum x-256-d out
    →改为→
    256d in-(256,1×1,4)*32-(4,3×3,4)*32-(4,1×1,256)*32-concat-sum x-256-d out (32 paths 采用相同的卷积参数)
    block depth>3时使用

  • PreAct ResNet
    conv-bn-relu-sum x-relu →改为→ bn-relu-conv-bn-relu-conv-sum x

  • SENet
    x→(c×h×w)→Global pooling(c×1×1)→fc(c/16×1×1)→fc(c×1×1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值