AlexNet,VGG,GoogleNet,ResNet,DenseNet,NIN,MobileNet特定总结

本文总结了深度学习中的几个关键模型,包括AlexNet的ReLU和多GPU训练,VGG的3×3滤波器,GoogleNet的一维卷积和Inception模块,ResNet的残差连接,DenseNet的密集连接,以及NIN的网络内网络结构和MobileNet的深度可分离卷积。这些模型通过创新的方式解决了深度学习中过拟合、计算效率和网络深度等问题。
摘要由CSDN通过智能技术生成

一:AlexNet
1.使用ReLU加快模型训练

2.使用多GPU同时训练模型,加速

3.使用response-normalized加强正则化效果

4.叠加性池化(overlapping pooling)防止过拟合

5.dropout防止过拟合

二:VGG
1.使用3×3 Filters而不是大尺寸的Filters

2.multi-scale training, testing

3.模型融合

4.Dense (Convolutionalized) Testing,用conv替代FC

三:GoogleNet

  1. 1x1 conv :减少维度,计算量,模型大小,缓和过拟合

2.Inception module:stack 1×1 conv, 3×3 conv, 5×5 conv, and 3×3 max pooling 到一层,使得该层能使用不同的conv
去提取不同的特征
在这里插入图片描述

3.global average pooling 取代FC减少计算量,过拟合

四:ResNet
1.提出了identity shortcut connection来解决模型过深,训练时梯度消失的问题,使得ResNet能构建很深的神经网络。

2.改进, ResNet with stochastic depth,训练时随机drop一些网络层不使用,test时则全部使用,可以减少训练时间,同时

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值