一:AlexNet
1.使用ReLU加快模型训练
2.使用多GPU同时训练模型,加速
3.使用response-normalized加强正则化效果
4.叠加性池化(overlapping pooling)防止过拟合
5.dropout防止过拟合
二:VGG
1.使用3×3 Filters而不是大尺寸的Filters
2.multi-scale training, testing
3.模型融合
4.Dense (Convolutionalized) Testing,用conv替代FC
三:GoogleNet
- 1x1 conv :减少维度,计算量,模型大小,缓和过拟合
2.Inception module:stack 1×1 conv, 3×3 conv, 5×5 conv, and 3×3 max pooling 到一层,使得该层能使用不同的conv
去提取不同的特征
3.global average pooling 取代FC减少计算量,过拟合
四:ResNet
1.提出了identity shortcut connection来解决模型过深,训练时梯度消失的问题,使得ResNet能构建很深的神经网络。
2.改进, ResNet with stochastic depth,训练时随机drop一些网络层不使用,test时则全部使用,可以减少训练时间,同时