【题目描述】
一天,神犇和 LCR 在玩扑克牌。他们玩的是一种叫做“接竹竿”的游戏。
游戏规则是:一共有 n 张牌,每张牌上有一个花色 c 和一个点数 v,花色不超过 k 种。将这些牌依次放入一列牌的末端。若放入之前这列牌中已有与这张牌花色相同的牌,你可以选择将这张牌和任意一张花色相同的牌之间的所有牌全部取出队列(包括这两张牌本身),并得到与取出的所有牌点数和相同的分数。现在已知 LCR 把这 n 张牌放入队列的顺序,求她最多能得多少分。
输入顺序即为 LCR 放入队列的顺序。
即ci表示第 i张放入的牌的花色,vi表示第 i张放入的牌的点数。
【输入格式】
第一行两个整数 n,k 。
第二行, n 个整数
c1,c2,...,cn
表示花色,满足
1≤ci≤k
。
第三行, n个整数
v1,v2,...,vn
表示点数。
【输出格式】
输出一行一个整数,表示最多能得到的分数。
【样例输入】
7 3
1 2 1 2 3 2 3
1 2 1 2 3 2 3
【样例输出】
13
【数据范围】
【分析】
首先不难设计出
O(n2)
的算法:
f[i]=max(f[i],f[j−1]+sum[i]−sum[j−1])(c[i]==c[j])
因为sum[i]不变,所以我们要使得f[j-1]-sum[j-1]最大,所以对于每种花色都记录一下即可。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN=1000005;
const ll INF=1LL<<50;
int a[MAXN];
ll f[MAXN],sum[MAXN],tmp[MAXN];
inline int read(){
int x=0,f=1;
char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-1;
for(;isdigit(ch);ch=getchar()) x=(x<<1)+(x<<3)+(ch^48);
return x * f;
}
int main(){
int i,n=read(),k=read();
for(i=1;i<=n;i++) a[i]=read();
for(i=1;i<=n;i++) sum[i]=sum[i-1]+read();
for(i=1;i<=k;i++) tmp[i]=-INF;
for(i=1;i<=n;i++) f[i]=max(f[i-1],tmp[a[i]]+sum[i]),tmp[a[i]]=max(tmp[a[i]],f[i-1]-sum[i-1]);
printf("%lld",f[n]);
}