接竹竿

本文介绍了一款名为“接竹竿”的扑克牌游戏,并详细解析了其背后的算法原理。游戏中,玩家需按顺序放置不同花色和点数的牌,通过移除相同花色的牌来获得分数。文章提供了一个O(n^2)复杂度的解决方案,并附带完整的C++代码实现。
摘要由CSDN通过智能技术生成

【题目描述】
一天,神犇和 LCR 在玩扑克牌。他们玩的是一种叫做“接竹竿”的游戏。
游戏规则是:一共有 n 张牌,每张牌上有一个花色 c 和一个点数 v,花色不超过 k 种。将这些牌依次放入一列牌的末端。若放入之前这列牌中已有与这张牌花色相同的牌,你可以选择将这张牌和任意一张花色相同的牌之间的所有牌全部取出队列(包括这两张牌本身),并得到与取出的所有牌点数和相同的分数。现在已知 LCR 把这 n 张牌放入队列的顺序,求她最多能得多少分。
输入顺序即为 LCR 放入队列的顺序。
即ci表示第 i张放入的牌的花色,vi表示第 i张放入的牌的点数。
【输入格式】
第一行两个整数 n,k 。
第二行, n 个整数 c1,c2,...,cn 表示花色,满足 1cik
第三行, n个整数 v1,v2,...,vn 表示点数。
【输出格式】
输出一行一个整数,表示最多能得到的分数。
【样例输入】
7 3
1 2 1 2 3 2 3
1 2 1 2 3 2 3
【样例输出】
13
【数据范围】

【分析】
首先不难设计出 O(n2) 的算法: f[i]=max(f[i],f[j1]+sum[i]sum[j1])(c[i]==c[j])
因为sum[i]不变,所以我们要使得f[j-1]-sum[j-1]最大,所以对于每种花色都记录一下即可。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN=1000005;
const ll INF=1LL<<50;
int a[MAXN];
ll f[MAXN],sum[MAXN],tmp[MAXN];
inline int read(){
  int x=0,f=1;
  char ch=getchar();
  for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-1;
  for(;isdigit(ch);ch=getchar()) x=(x<<1)+(x<<3)+(ch^48);
  return x * f;
}
int main(){
  int i,n=read(),k=read();
  for(i=1;i<=n;i++) a[i]=read();
  for(i=1;i<=n;i++) sum[i]=sum[i-1]+read();
  for(i=1;i<=k;i++) tmp[i]=-INF;
  for(i=1;i<=n;i++) f[i]=max(f[i-1],tmp[a[i]]+sum[i]),tmp[a[i]]=max(tmp[a[i]],f[i-1]-sum[i-1]);
  printf("%lld",f[n]);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值