opencv笔记二十八(模板匹配(matchTemplate,较为低级必须是原图扣出来的一部分,且长宽都不能变才行,原理类似于卷积))

博客详细介绍了OpenCV中的模板匹配原理和实现方法,包括滑动比较、度量保存和结果矩阵。讨论了六种不同的匹配方式,并重点提到了TM_CCORR_NORMED方法。同时,解释了`matchTemplate`函数的使用和`minMaxLoc`函数如何找到最佳匹配位置。
摘要由CSDN通过智能技术生成

直观原理来自:

https://docs.opencv.org/2.4/doc/tutorials/imgproc/histograms/template_matching/template_matching.html

 

它是怎么实现的?

  • 我们需要2幅图像:

    1. 原图像 (I): 在这幅图像里,我们希望找到一块和模板匹配的区域
    2. 模板 (T): 将和原图像比照的图像块

    我们的目标是检测最匹配的区域:

    ../../../../../_images/Template_Matching_Template_Theory_Summary.jpg
  • 为了确定匹配区域, 我们不得不滑动模板图像和原图像进行 比较 :

    ../../../../../_images/Template_Matching_Template_Theory_Sliding.jpg
  • 通过 滑动, 我们的意思是图像块一次移动一个像素 (从左往右,从上往下). 在每一个位置, 都进行一次度量计算来表明它是 “好” 或 “坏” 地与那个位置匹配 (或者说块图像和原图像的特定区域有多么相似).

  • 对于 T 覆盖在 I 上的每个

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值