问题主题:著名的01背包问题
问题描述:
有n个重量和价值分别为wi、vi的物品,现在要从这些物品中选出总重量不超过W的物品,求所有挑选方案中的价值最大值。
限制条件:
1<=N<=100
1<=wi 、vi<=100
1<=wi<=10000
样例:
输入
N=4
W[N] = {2, 1, 3, 2}
V[N] = {3, 2, 4, 2}
输出
W = 5(选择0,1,3号)
思路:记忆化搜索;感觉和dfs有点相似,从前到后用递归去计算最大值。
#include<stdio.h>
#include<math.h>
#include<iostream>
#include<algorithm>
#include<string>
#include<cstring>
using namespace std;
int solve(int i,int j);
int dp[4][5];
int we[4]={2,1,3,2};
int va[4]={3,2,4,2};
const int n=4;
const int w=5;
int main()
{
for(int i=0;i<n;i++)
memset(dp[i],-1,sizeof(dp[i]));
int ans=solve(0,w);
cout<<ans<<endl;
return 0;
}
int solve(int i,int j)
{
if(dp[i][j]!=-1)
return dp[i][j];
int re=0;
if(i>=n)
{
return re;
}
if(j<we[i])
{
dp[i+1][j]=solve(i+1,j);
}
else
{
re=max(solve(i+1,j),solve(i+1,j-we[i])+va[i]);
}
return dp[i+1][j]=re;
}