写在前面的话

人工智能作为当前比较热门的技术,想要学好并不容易,一般的程序员不容易顺利进入人工智能的研究领域,因为人工智能技术不仅仅需要有较强的编程能力,还需要有一定的数学功底,希望本专栏的课程可以帮助大家顺利进入人工智能领域的大门,当然人工智能的理论博大精深,绝不是这一个专栏就可以讲清楚的,本专栏会选择比较简单、易懂的概念和模型,帮助大家理解人工智能的基本原理,梳理好相关的概念,为以后的转型打好基础。在学习人工智能算法之前,你至少需要掌握:至少一门编程语言(这里推荐Python);高等数学函数、微积分;概率论;线性代数或者矩阵论的内容

对于Python,需要掌握它的基本语法、Numpy模块、matplotlib模块、Pandas模块的使用。

对于数学,无需从头开始学习完整的数学体系,你只需要重点知道:

导数、求导、单调性、函数凹凸、泰勒级数展开式、极值判断、偏导数、随机事件概率、贝叶斯公式、随机变量、期望方差、常用概率分布、随机向量、最大似然估计、协方差矩阵、雅可比矩阵、拉格朗日乘数法、梯度向量、向量运算、行列式、二次型、特征值和特征向量、矩阵正定性、奇异值分解、共轭梯度法、矩阵范数。

线性代数部分需要重点把握,因为很多算法输入的数据都是特征向量,很多算法最终都会转换成求解特征值和特征向量的问题,比如处理图像数据时,黑白图像本质就是2维数据,彩色图像本质就是3维数据。

掌握线性代数、微积分、概率论和一些优化算法知识,就可以让你能够看懂大部分算法的原理。常用的算法和对应的数学知识如下表:

常用算法所有数学知识
决策树(DT)概率、熵、Gini系数
KNN算法

距离函数

贝叶斯分类器

随机变量、贝叶斯公式、正态分布、最大似然估计

流形学习最优化、流形、图、特征向量特征值
随机森林(RF)抽样、方差
支持向量机(SVM)强对偶、拉格朗日对偶、KKT条件、凸优化、核函数、Mercer条件
主成分分析(PCA)协方差矩阵、散度矩阵、拉格朗日乘数法、特征向量特征值
线性判别分析散度矩阵、逆矩阵、拉格朗日乘数法、特征向量特征值
Logistic        概率、随机变量、最大似然估计、梯度下降法、凸优化、牛顿法
人工神经网络(ANN)梯度下降法、链式法则
卷积神经网络(CNN)梯度下降法、链式法则
循环神经网络(RNN)梯度下降法、链式法则
K-means算法距离函数
贝叶斯网络图、条件概率、贝叶斯公式
隐马尔可夫模型(HMM)拉格朗日乘数法、概率、离散随机变量、条件概率、最大似然估计
生成对抗网络(GAN)梯度下降法、链式法则、极值定理、条件分布、测地距离

<think>好的,用户的问题是如何编一段文字内容。首先需要明确用户的需求,他们可能想要了解作的基本步骤、提升文字质量的技巧,或者具体的结构方法。根据用户意图,可能需要从确定主题、结构安排、语言风格等方面展开。 接下来,调用网络搜索工具查找相关的作指南和技巧。搜索结果可能包括确定核心主题、逻辑分段、使用生动语言、避免冗余、多次修改等建议。同时,可能还会找到一些具体的例子,比如如何用比喻和例子增强表达,或者如何通过检查逻辑和语法错误来优化内容。 需要整合这些信息,按照用户的要求分步骤呈现,避免使用第一人称和步骤性词汇。每个方法或步骤之间换行,保持清晰。例如,可以分成确定核心主题、合理组织结构、优化语言表达、避免冗余内容、反复修改润色等部分。每个部分需要简明扼要,结合搜索到的技巧,比如使用过渡句连接段落,采用具体例子支持观点等。 同时,注意用户提到的格式要求,特别是代码和公式部分,但这个问题可能不涉及这些内容。最后,生成相关问题时要基于用户的原问题,可能涉及作技巧、避免常见错误、提升段落流畅度等方向。确保相关问题符合用户可能进一步的需求,比如如何让文字更吸引人,如何避免语法错误,如何提升作逻辑性等。 检查是否符合所有格式要求,特别是避免引用集中在末尾,使用正确的标题和标号,确保相关问题部分正确无误。最终答案应结构清晰,实用性强,满足用户的实际操作需求。</think>编一段文字内容需结合主题明确、结构清晰、语言流畅等要素。以下是关键步骤与实用技巧: **确定核心主题** 聚焦核心观点或叙述目标,避免内容发散。使用$主题句=核心观点+关键词$公式构建段落中心句,确保每个段落仅表达一个主要思想。 **合理组织结构** - 采用总分总、时间顺序或因果逻辑等结构 - 重要信息前置,辅助性内容后置 - 段落间用过渡句衔接,例如使用"然而""值得注意的是"等连接词 **优化语言表达** ```text 1. 使用主动语态增强表达力:"研究人员发现新物种"优于"新物种被研究人员发现" 2. 控制句子长度(建议15-25字),长短句交替使用 3. 加入具体案例:"智能手机使用率增长"改为"2023年全球智能手机普及率达83.4%(Statista数据)" ``` **避免冗余内容** 运用$信息密度=有效信息量/文字长度$公式评估内容质量,删除重复表述和无关细节。例如将"圆形形状的球体"简化为"球体"。 **反复修改润色** - 通读检查逻辑连贯性 - 使用语法检测工具(如Grammarly) - 朗读确认语句流畅度 - 进行段落拆分测试:每段是否可独立表达完整子观点
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值