写在前面的话

人工智能作为当前比较热门的技术,想要学好并不容易,一般的程序员不容易顺利进入人工智能的研究领域,因为人工智能技术不仅仅需要有较强的编程能力,还需要有一定的数学功底,希望本专栏的课程可以帮助大家顺利进入人工智能领域的大门,当然人工智能的理论博大精深,绝不是这一个专栏就可以讲清楚的,本专栏会选择比较简单、易懂的概念和模型,帮助大家理解人工智能的基本原理,梳理好相关的概念,为以后的转型打好基础。在学习人工智能算法之前,你至少需要掌握:至少一门编程语言(这里推荐Python);高等数学函数、微积分;概率论;线性代数或者矩阵论的内容

对于Python,需要掌握它的基本语法、Numpy模块、matplotlib模块、Pandas模块的使用。

对于数学,无需从头开始学习完整的数学体系,你只需要重点知道:

导数、求导、单调性、函数凹凸、泰勒级数展开式、极值判断、偏导数、随机事件概率、贝叶斯公式、随机变量、期望方差、常用概率分布、随机向量、最大似然估计、协方差矩阵、雅可比矩阵、拉格朗日乘数法、梯度向量、向量运算、行列式、二次型、特征值和特征向量、矩阵正定性、奇异值分解、共轭梯度法、矩阵范数。

线性代数部分需要重点把握,因为很多算法输入的数据都是特征向量,很多算法最终都会转换成求解特征值和特征向量的问题,比如处理图像数据时,黑白图像本质就是2维数据,彩色图像本质就是3维数据。

掌握线性代数、微积分、概率论和一些优化算法知识,就可以让你能够看懂大部分算法的原理。常用的算法和对应的数学知识如下表:

常用算法所有数学知识
决策树(DT)概率、熵、Gini系数
KNN算法

距离函数

贝叶斯分类器

随机变量、贝叶斯公式、正态分布、最大似然估计

流形学习最优化、流形、图、特征向量特征值
随机森林(RF)抽样、方差
支持向量机(SVM)强对偶、拉格朗日对偶、KKT条件、凸优化、核函数、Mercer条件
主成分分析(PCA)协方差矩阵、散度矩阵、拉格朗日乘数法、特征向量特征值
线性判别分析散度矩阵、逆矩阵、拉格朗日乘数法、特征向量特征值
Logistic        概率、随机变量、最大似然估计、梯度下降法、凸优化、牛顿法
人工神经网络(ANN)梯度下降法、链式法则
卷积神经网络(CNN)梯度下降法、链式法则
循环神经网络(RNN)梯度下降法、链式法则
K-means算法距离函数
贝叶斯网络图、条件概率、贝叶斯公式
隐马尔可夫模型(HMM)拉格朗日乘数法、概率、离散随机变量、条件概率、最大似然估计
生成对抗网络(GAN)梯度下降法、链式法则、极值定理、条件分布、测地距离

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值