几种卷积神经网络的实现和模型地址链接

自2012年Alexnet赢得了ImageNet竞赛以来,深度学习(神经网络)得到了飞速发展,产生了许多的神经网络结构,本文主要总结Caffe中使用的神经网络(分类的神经网络),本文的神经网络作者都使用Caffe训练过,并在Kaggle的Intel癌症预测比赛中进行了测试与使用(top 8%)。

1. Alexnet

Alexnet,2012年ImageNet竞赛冠军,深度学习的里程碑。

网络结构地址:https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet

预训练模型地址:http://dl.caffe.berkeleyvision.org/bvlc_alexnet.caffemodel

2. Squeezenet

Squeezenet设计目标不是为了提高识别的准确率,而是希望简化网络复杂度。squeezenet的模型结构确实很小,没压缩的情况下才5M左右,而且识别的精度还可以。

网络结构地址:https://github.com/DeepScale/SqueezeNet

预训练模型地址:https://github.com/DeepScale/SqueezeNet

3. VGG系列

VGG和GoogLenet是2014年imagenet竞赛的双雄,VGG主要分为VGG16和VGG19。其网络结构与预训练模型的地址如下:

VGG16的网络结构:https://gist.github.com/ksimonyan/211839e770f7b538e2d8#file-readme-md

VGG16的预训练模型: http://www.robots.ox.ac.uk/~vgg/software/very_deep/caffe/VGG_ILSVRC_16_layers.caffemodel

VGG19的网络结构:https://gist.github.com/ksimonyan/3785162f95cd2d5fee77#file-readme-md

VGG19的预训练模型:http://www.robots.ox.ac.uk/~vgg/software/very_deep/caffe/VGG_ILSVRC_19_layers.caffemodel

备注:上面的网络结构需要进行细微调整才能在Caffe中直接训练,主要是网络结构中的Type类型。

4. Resnet系列

Resnet网络,2015年ImageNet竞赛冠军,网络结构主要分为Resnet-50、Resnet-101、Resnet-152三种,当然也有一些其它的结构,例如Resnet-18,Resnet-14。

Github地址:https://github.com/KaimingHe/deep-residual-networks

Resnet-50、Resnet-101、Resnet-152的网络结构及预训练模型的下载地址:https://onedrive.live.com/?authkey=%21AAFW2-FVoxeVRck&id=4006CBB8476FF777%2117887&cid=4006CBB8476FF777

5. Inception系列

Inception系列是Google发明的一系列神经网络结构。

Inception-v1:

Inception-v1,即大名鼎鼎的GoogLenet,2014年ImageNet竞赛冠军。

网络结构地址:https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet

预训练模型地址:http://dl.caffe.berkeleyvision.org/bvlc_googlenet.caffemodel

Inception-v2:

即Inception V1 + Batch Normalization。

网络结构地址:https://github.com/pertusa/InceptionBN-21K-for-Caffe

预训练模型地址:http://www.dlsi.ua.es/~pertusa/deep/Inception21k.caffemodel

Inception-v3:

网络结构地址:https://pan.baidu.com/s/1boC0HEf#list/path=%2F

预训练模型地址:https://pan.baidu.com/s/1boC0HEf#list/path=%2F

Inception-v4:

网络结构地址:https://pan.baidu.com/s/1c6D150#list/path=%2F

预训练模型地址:https://pan.baidu.com/s/1c6D150#list/path=%2F

Inception-resnet-v2:

网络结构地址:https://pan.baidu.com/s/1jHPJCX4#list/path=%2F

预训练模型地址:https://pan.baidu.com/s/1jHPJCX4#list/path=%2F

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值