混淆矩阵
- 真实值是positive,模型认为是positive的数量(True Positive=TP)
- 真实值是positive,模型认为是negative的数量(False Negative=FN):这就是统计学上的第一类错误(Type I Error)
- 真实值是negative,模型认为是positive的数量(False Positive=FP):这就是统计学上的第二类错误(Type II Error)
- 真实值是negative,模型认为是negative的数量(True Negative=TN)
将这四个指标一起呈现在表格中,就能得到如下这样一个矩阵,我们称它为混淆矩阵(Confusion Matrix):

模型评判指标
•准确率(Accuracy)—— 针对整个模型
•精确率(Precision)
•灵敏度(Sensitivity):就是召回率(Recall)
•特异度(Specificity)

具体详情见:https://blog.csdn.net/Orange_Spotty_Cat/article/details/80520839
本文详细解析了混淆矩阵的概念,包括真阳性(TP)、假阴性(FN)、假阳性(FP)和真阴性(TN)等核心指标。同时介绍了基于混淆矩阵衍生的模型评判指标,如准确率、精确率、灵敏度(召回率)和特异度,为机器学习模型的性能评估提供了全面视角。
1万+

被折叠的 条评论
为什么被折叠?



